Metamath Proof Explorer


Theorem chsupsn

Description: Value of supremum of subset of CH on a singleton. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupsn ACA=A

Proof

Step Hyp Ref Expression
1 snssi ACAC
2 chsupval2 ACA=xC|Ax
3 1 2 syl ACA=xC|Ax
4 unisng ACA=A
5 eqimss A=AAA
6 4 5 syl ACAA
7 6 ancli ACACAA
8 sseq2 x=AAxAA
9 8 elrab AxC|AxACAA
10 7 9 sylibr ACAxC|Ax
11 intss1 AxC|AxxC|AxA
12 10 11 syl ACxC|AxA
13 ssintub AxC|Ax
14 4 13 eqsstrrdi ACAxC|Ax
15 12 14 eqssd ACxC|Ax=A
16 3 15 eqtrd ACA=A