| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unss |
|
| 2 |
|
simp1 |
|
| 3 |
|
shss |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simp2 |
|
| 6 |
|
shss |
|
| 7 |
5 6
|
syl |
|
| 8 |
4 7
|
unssd |
|
| 9 |
|
chss |
|
| 10 |
9
|
3ad2ant3 |
|
| 11 |
|
occon2 |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
1 12
|
biimtrid |
|
| 14 |
|
shjval |
|
| 15 |
2 5 14
|
syl2anc |
|
| 16 |
|
ococ |
|
| 17 |
16
|
3ad2ant3 |
|
| 18 |
17
|
eqcomd |
|
| 19 |
15 18
|
sseq12d |
|
| 20 |
13 19
|
sylibrd |
|
| 21 |
|
shub1 |
|
| 22 |
2 5 21
|
syl2anc |
|
| 23 |
|
sstr |
|
| 24 |
22 23
|
sylan |
|
| 25 |
|
shub2 |
|
| 26 |
5 2 25
|
syl2anc |
|
| 27 |
|
sstr |
|
| 28 |
26 27
|
sylan |
|
| 29 |
24 28
|
jca |
|
| 30 |
29
|
ex |
|
| 31 |
20 30
|
impbid |
|