Metamath Proof Explorer


Theorem shlub

Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shlub A S B S C C A C B C A B C

Proof

Step Hyp Ref Expression
1 unss A C B C A B C
2 simp1 A S B S C C A S
3 shss A S A
4 2 3 syl A S B S C C A
5 simp2 A S B S C C B S
6 shss B S B
7 5 6 syl A S B S C C B
8 4 7 unssd A S B S C C A B
9 chss C C C
10 9 3ad2ant3 A S B S C C C
11 occon2 A B C A B C A B C
12 8 10 11 syl2anc A S B S C C A B C A B C
13 1 12 syl5bi A S B S C C A C B C A B C
14 shjval A S B S A B = A B
15 2 5 14 syl2anc A S B S C C A B = A B
16 ococ C C C = C
17 16 3ad2ant3 A S B S C C C = C
18 17 eqcomd A S B S C C C = C
19 15 18 sseq12d A S B S C C A B C A B C
20 13 19 sylibrd A S B S C C A C B C A B C
21 shub1 A S B S A A B
22 2 5 21 syl2anc A S B S C C A A B
23 sstr A A B A B C A C
24 22 23 sylan A S B S C C A B C A C
25 shub2 B S A S B A B
26 5 2 25 syl2anc A S B S C C B A B
27 sstr B A B A B C B C
28 26 27 sylan A S B S C C A B C B C
29 24 28 jca A S B S C C A B C A C B C
30 29 ex A S B S C C A B C A C B C
31 20 30 impbid A S B S C C A C B C A B C