Metamath Proof Explorer


Table of Contents - 19.6.5. Theorems about operators and functionals

  1. nmopval
  2. elcnop
  3. ellnop
  4. lnopf
  5. elbdop
  6. bdopln
  7. bdopf
  8. nmopsetretALT
  9. nmopsetretHIL
  10. nmopsetn0
  11. nmopxr
  12. nmoprepnf
  13. nmopgtmnf
  14. nmopreltpnf
  15. nmopre
  16. elbdop2
  17. elunop
  18. elhmop
  19. hmopf
  20. hmopex
  21. nmfnval
  22. nmfnsetre
  23. nmfnsetn0
  24. nmfnxr
  25. nmfnrepnf
  26. nlfnval
  27. elcnfn
  28. ellnfn
  29. lnfnf
  30. dfadj2
  31. funadj
  32. dmadjss
  33. dmadjop
  34. adjeu
  35. adjval
  36. adjval2
  37. cnvadj
  38. funcnvadj
  39. adj1o
  40. dmadjrn
  41. eigvecval
  42. eigvalfval
  43. specval
  44. speccl
  45. hhlnoi
  46. hhnmoi
  47. hhbloi
  48. hh0oi
  49. hhcno
  50. hhcnf
  51. dmadjrnb
  52. nmoplb
  53. nmopub
  54. nmopub2tALT
  55. nmopub2tHIL
  56. nmopge0
  57. nmopgt0
  58. cnopc
  59. lnopl
  60. unop
  61. unopf1o
  62. unopnorm
  63. cnvunop
  64. unopadj
  65. unoplin
  66. counop
  67. hmop
  68. hmopre
  69. nmfnlb
  70. nmfnleub
  71. nmfnleub2
  72. nmfnge0
  73. elnlfn
  74. elnlfn2
  75. cnfnc
  76. lnfnl
  77. adjcl
  78. adj1
  79. adj2
  80. adjeq
  81. adjadj
  82. adjvalval
  83. unopadj2
  84. hmopadj
  85. hmdmadj
  86. hmopadj2
  87. hmoplin
  88. brafval
  89. braval
  90. braadd
  91. bramul
  92. brafn
  93. bralnfn
  94. bracl
  95. bra0
  96. brafnmul
  97. kbfval
  98. kbop
  99. kbval
  100. kbmul
  101. kbpj
  102. eleigvec
  103. eleigvec2
  104. eleigveccl
  105. eigvalval
  106. eigvalcl
  107. eigvec1
  108. eighmre
  109. eighmorth
  110. nmopnegi
  111. lnop0
  112. lnopmul
  113. lnopli
  114. lnopfi
  115. lnop0i
  116. lnopaddi
  117. lnopmuli
  118. lnopaddmuli
  119. lnopsubi
  120. lnopsubmuli
  121. lnopmulsubi
  122. homco2
  123. idunop
  124. 0cnop
  125. 0cnfn
  126. idcnop
  127. idhmop
  128. 0hmop
  129. 0lnop
  130. 0lnfn
  131. nmop0
  132. nmfn0
  133. hmopbdoptHIL
  134. hoddii
  135. hoddi
  136. nmop0h
  137. idlnop
  138. 0bdop
  139. adj0
  140. nmlnop0iALT
  141. nmlnop0iHIL
  142. nmlnopgt0i
  143. nmlnop0
  144. nmlnopne0
  145. lnopmi
  146. lnophsi
  147. lnophdi
  148. lnopcoi
  149. lnopco0i
  150. lnopeq0lem1
  151. lnopeq0lem2
  152. lnopeq0i
  153. lnopeqi
  154. lnopeq
  155. lnopunilem1
  156. lnopunilem2
  157. lnopunii
  158. elunop2
  159. nmopun
  160. unopbd
  161. lnophmlem1
  162. lnophmlem2
  163. lnophmi
  164. lnophm
  165. hmops
  166. hmopm
  167. hmopd
  168. hmopco
  169. nmbdoplbi
  170. nmbdoplb
  171. nmcexi
  172. nmcopexi
  173. nmcoplbi
  174. nmcopex
  175. nmcoplb
  176. nmophmi
  177. bdophmi
  178. lnconi
  179. lnopconi
  180. lnopcon
  181. lnopcnbd
  182. lncnopbd
  183. lncnbd
  184. lnopcnre
  185. lnfnli
  186. lnfnfi
  187. lnfn0i
  188. lnfnaddi
  189. lnfnmuli
  190. lnfnaddmuli
  191. lnfnsubi
  192. lnfn0
  193. lnfnmul
  194. nmbdfnlbi
  195. nmbdfnlb
  196. nmcfnexi
  197. nmcfnlbi
  198. nmcfnex
  199. nmcfnlb
  200. lnfnconi
  201. lnfncon
  202. lnfncnbd
  203. imaelshi
  204. rnelshi
  205. nlelshi
  206. nlelchi