| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unss |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ∈ Sℋ ) |
| 3 |
|
shss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ℋ ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ∈ Sℋ ) |
| 6 |
|
shss |
⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ⊆ ℋ ) |
| 8 |
4 7
|
unssd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ) |
| 9 |
|
chss |
⊢ ( 𝐶 ∈ Cℋ → 𝐶 ⊆ ℋ ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ⊆ ℋ ) |
| 11 |
|
occon2 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ∧ 𝐶 ⊆ ℋ ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 13 |
1 12
|
biimtrid |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 14 |
|
shjval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 15 |
2 5 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 16 |
|
ococ |
⊢ ( 𝐶 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) = 𝐶 ) |
| 17 |
16
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) = 𝐶 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 = ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) |
| 19 |
15 18
|
sseq12d |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 20 |
13 19
|
sylibrd |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |
| 21 |
|
shub1 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 22 |
2 5 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 24 |
22 23
|
sylan |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 25 |
|
shub2 |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 26 |
5 2 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 27 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 28 |
26 27
|
sylan |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 29 |
24 28
|
jca |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 30 |
29
|
ex |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
| 31 |
20 30
|
impbid |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |