| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssats.s |
|
| 2 |
|
lssats.n |
|
| 3 |
|
lssats.a |
|
| 4 |
|
eleq1 |
|
| 5 |
|
simplll |
|
| 6 |
|
simpllr |
|
| 7 |
|
simplr |
|
| 8 |
|
eqid |
|
| 9 |
8 1
|
lssel |
|
| 10 |
6 7 9
|
syl2anc |
|
| 11 |
8 1 2
|
lspsncl |
|
| 12 |
5 10 11
|
syl2anc |
|
| 13 |
1 2
|
lspid |
|
| 14 |
5 12 13
|
syl2anc |
|
| 15 |
1 3
|
lsatlss |
|
| 16 |
15
|
adantr |
|
| 17 |
|
rabss2 |
|
| 18 |
|
uniss |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
|
unimax |
|
| 21 |
8 1
|
lssss |
|
| 22 |
20 21
|
eqsstrd |
|
| 23 |
22
|
adantl |
|
| 24 |
19 23
|
sstrd |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
simpr |
|
| 27 |
|
eqid |
|
| 28 |
8 2 27 3
|
lsatlspsn2 |
|
| 29 |
5 10 26 28
|
syl3anc |
|
| 30 |
1 2 5 6 7
|
ellspsn5 |
|
| 31 |
|
sseq1 |
|
| 32 |
31
|
elrab |
|
| 33 |
29 30 32
|
sylanbrc |
|
| 34 |
|
elssuni |
|
| 35 |
33 34
|
syl |
|
| 36 |
8 2
|
lspss |
|
| 37 |
5 25 35 36
|
syl3anc |
|
| 38 |
14 37
|
eqsstrrd |
|
| 39 |
8 2
|
lspsnid |
|
| 40 |
5 10 39
|
syl2anc |
|
| 41 |
38 40
|
sseldd |
|
| 42 |
|
simpll |
|
| 43 |
8 1 2
|
lspcl |
|
| 44 |
24 43
|
syldan |
|
| 45 |
44
|
adantr |
|
| 46 |
27 1
|
lss0cl |
|
| 47 |
42 45 46
|
syl2anc |
|
| 48 |
4 41 47
|
pm2.61ne |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
ssrdv |
|
| 51 |
|
simpl |
|
| 52 |
8 2
|
lspss |
|
| 53 |
51 23 19 52
|
syl3anc |
|
| 54 |
20
|
adantl |
|
| 55 |
54
|
fveq2d |
|
| 56 |
1 2
|
lspid |
|
| 57 |
55 56
|
eqtrd |
|
| 58 |
53 57
|
sseqtrd |
|
| 59 |
50 58
|
eqssd |
|