Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. Hypothesis ( shatomistici analog.) (Contributed by NM, 9-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssats.s | |
|
lssats.n | |
||
lssats.a | |
||
Assertion | lssats | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssats.s | |
|
2 | lssats.n | |
|
3 | lssats.a | |
|
4 | eleq1 | |
|
5 | simplll | |
|
6 | simpllr | |
|
7 | simplr | |
|
8 | eqid | |
|
9 | 8 1 | lssel | |
10 | 6 7 9 | syl2anc | |
11 | 8 1 2 | lspsncl | |
12 | 5 10 11 | syl2anc | |
13 | 1 2 | lspid | |
14 | 5 12 13 | syl2anc | |
15 | 1 3 | lsatlss | |
16 | 15 | adantr | |
17 | rabss2 | |
|
18 | uniss | |
|
19 | 16 17 18 | 3syl | |
20 | unimax | |
|
21 | 8 1 | lssss | |
22 | 20 21 | eqsstrd | |
23 | 22 | adantl | |
24 | 19 23 | sstrd | |
25 | 24 | ad2antrr | |
26 | simpr | |
|
27 | eqid | |
|
28 | 8 2 27 3 | lsatlspsn2 | |
29 | 5 10 26 28 | syl3anc | |
30 | 1 2 5 6 7 | lspsnel5a | |
31 | sseq1 | |
|
32 | 31 | elrab | |
33 | 29 30 32 | sylanbrc | |
34 | elssuni | |
|
35 | 33 34 | syl | |
36 | 8 2 | lspss | |
37 | 5 25 35 36 | syl3anc | |
38 | 14 37 | eqsstrrd | |
39 | 8 2 | lspsnid | |
40 | 5 10 39 | syl2anc | |
41 | 38 40 | sseldd | |
42 | simpll | |
|
43 | 8 1 2 | lspcl | |
44 | 24 43 | syldan | |
45 | 44 | adantr | |
46 | 27 1 | lss0cl | |
47 | 42 45 46 | syl2anc | |
48 | 4 41 47 | pm2.61ne | |
49 | 48 | ex | |
50 | 49 | ssrdv | |
51 | simpl | |
|
52 | 8 2 | lspss | |
53 | 51 23 19 52 | syl3anc | |
54 | 20 | adantl | |
55 | 54 | fveq2d | |
56 | 1 2 | lspid | |
57 | 55 56 | eqtrd | |
58 | 53 57 | sseqtrd | |
59 | 50 58 | eqssd | |