Step |
Hyp |
Ref |
Expression |
1 |
|
lssats.s |
|
2 |
|
lssats.n |
|
3 |
|
lssats.a |
|
4 |
|
eleq1 |
|
5 |
|
simplll |
|
6 |
|
simpllr |
|
7 |
|
simplr |
|
8 |
|
eqid |
|
9 |
8 1
|
lssel |
|
10 |
6 7 9
|
syl2anc |
|
11 |
8 1 2
|
lspsncl |
|
12 |
5 10 11
|
syl2anc |
|
13 |
1 2
|
lspid |
|
14 |
5 12 13
|
syl2anc |
|
15 |
1 3
|
lsatlss |
|
16 |
15
|
adantr |
|
17 |
|
rabss2 |
|
18 |
|
uniss |
|
19 |
16 17 18
|
3syl |
|
20 |
|
unimax |
|
21 |
8 1
|
lssss |
|
22 |
20 21
|
eqsstrd |
|
23 |
22
|
adantl |
|
24 |
19 23
|
sstrd |
|
25 |
24
|
ad2antrr |
|
26 |
|
simpr |
|
27 |
|
eqid |
|
28 |
8 2 27 3
|
lsatlspsn2 |
|
29 |
5 10 26 28
|
syl3anc |
|
30 |
1 2 5 6 7
|
lspsnel5a |
|
31 |
|
sseq1 |
|
32 |
31
|
elrab |
|
33 |
29 30 32
|
sylanbrc |
|
34 |
|
elssuni |
|
35 |
33 34
|
syl |
|
36 |
8 2
|
lspss |
|
37 |
5 25 35 36
|
syl3anc |
|
38 |
14 37
|
eqsstrrd |
|
39 |
8 2
|
lspsnid |
|
40 |
5 10 39
|
syl2anc |
|
41 |
38 40
|
sseldd |
|
42 |
|
simpll |
|
43 |
8 1 2
|
lspcl |
|
44 |
24 43
|
syldan |
|
45 |
44
|
adantr |
|
46 |
27 1
|
lss0cl |
|
47 |
42 45 46
|
syl2anc |
|
48 |
4 41 47
|
pm2.61ne |
|
49 |
48
|
ex |
|
50 |
49
|
ssrdv |
|
51 |
|
simpl |
|
52 |
8 2
|
lspss |
|
53 |
51 23 19 52
|
syl3anc |
|
54 |
20
|
adantl |
|
55 |
54
|
fveq2d |
|
56 |
1 2
|
lspid |
|
57 |
55 56
|
eqtrd |
|
58 |
53 57
|
sseqtrd |
|
59 |
50 58
|
eqssd |
|