Metamath Proof Explorer


Theorem lpssat

Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lpssat.s S = LSubSp W
lpssat.a A = LSAtoms W
lpssat.w φ W LMod
lpssat.t φ T S
lpssat.u φ U S
lpssat.l φ T U
Assertion lpssat φ q A q U ¬ q T

Proof

Step Hyp Ref Expression
1 lpssat.s S = LSubSp W
2 lpssat.a A = LSAtoms W
3 lpssat.w φ W LMod
4 lpssat.t φ T S
5 lpssat.u φ U S
6 lpssat.l φ T U
7 dfpss3 T U T U ¬ U T
8 7 simprbi T U ¬ U T
9 6 8 syl φ ¬ U T
10 iman q U q T ¬ q U ¬ q T
11 10 ralbii q A q U q T q A ¬ q U ¬ q T
12 ss2rab q A | q U q A | q T q A q U q T
13 3 adantr φ q A | q U q A | q T W LMod
14 1 2 lsatlss W LMod A S
15 rabss2 A S q A | q T q S | q T
16 uniss q A | q T q S | q T q A | q T q S | q T
17 3 14 15 16 4syl φ q A | q T q S | q T
18 unimax T S q S | q T = T
19 4 18 syl φ q S | q T = T
20 eqid Base W = Base W
21 20 1 lssss T S T Base W
22 4 21 syl φ T Base W
23 19 22 eqsstrd φ q S | q T Base W
24 17 23 sstrd φ q A | q T Base W
25 24 adantr φ q A | q U q A | q T q A | q T Base W
26 uniss q A | q U q A | q T q A | q U q A | q T
27 26 adantl φ q A | q U q A | q T q A | q U q A | q T
28 eqid LSpan W = LSpan W
29 20 28 lspss W LMod q A | q T Base W q A | q U q A | q T LSpan W q A | q U LSpan W q A | q T
30 13 25 27 29 syl3anc φ q A | q U q A | q T LSpan W q A | q U LSpan W q A | q T
31 1 28 2 lssats W LMod U S U = LSpan W q A | q U
32 3 5 31 syl2anc φ U = LSpan W q A | q U
33 32 adantr φ q A | q U q A | q T U = LSpan W q A | q U
34 1 28 2 lssats W LMod T S T = LSpan W q A | q T
35 3 4 34 syl2anc φ T = LSpan W q A | q T
36 35 adantr φ q A | q U q A | q T T = LSpan W q A | q T
37 30 33 36 3sstr4d φ q A | q U q A | q T U T
38 37 ex φ q A | q U q A | q T U T
39 12 38 syl5bir φ q A q U q T U T
40 11 39 syl5bir φ q A ¬ q U ¬ q T U T
41 9 40 mtod φ ¬ q A ¬ q U ¬ q T
42 dfrex2 q A q U ¬ q T ¬ q A ¬ q U ¬ q T
43 41 42 sylibr φ q A q U ¬ q T