Metamath Proof Explorer


Theorem lpssat

Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lpssat.s S = LSubSp W
lpssat.a A = LSAtoms W
lpssat.w φ W LMod
lpssat.t φ T S
lpssat.u φ U S
lpssat.l φ T U
Assertion lpssat φ q A q U ¬ q T

Proof

Step Hyp Ref Expression
1 lpssat.s S = LSubSp W
2 lpssat.a A = LSAtoms W
3 lpssat.w φ W LMod
4 lpssat.t φ T S
5 lpssat.u φ U S
6 lpssat.l φ T U
7 dfpss3 T U T U ¬ U T
8 7 simprbi T U ¬ U T
9 6 8 syl φ ¬ U T
10 iman q U q T ¬ q U ¬ q T
11 10 ralbii q A q U q T q A ¬ q U ¬ q T
12 ss2rab q A | q U q A | q T q A q U q T
13 1 2 lsatlss W LMod A S
14 rabss2 A S q A | q T q S | q T
15 uniss q A | q T q S | q T q A | q T q S | q T
16 3 13 14 15 4syl φ q A | q T q S | q T
17 unimax T S q S | q T = T
18 4 17 syl φ q S | q T = T
19 eqid Base W = Base W
20 19 1 lssss T S T Base W
21 4 20 syl φ T Base W
22 18 21 eqsstrd φ q S | q T Base W
23 16 22 sstrd φ q A | q T Base W
24 uniss q A | q U q A | q T q A | q U q A | q T
25 eqid LSpan W = LSpan W
26 19 25 lspss W LMod q A | q T Base W q A | q U q A | q T LSpan W q A | q U LSpan W q A | q T
27 3 23 24 26 syl2an3an φ q A | q U q A | q T LSpan W q A | q U LSpan W q A | q T
28 1 25 2 lssats W LMod U S U = LSpan W q A | q U
29 3 5 28 syl2anc φ U = LSpan W q A | q U
30 29 adantr φ q A | q U q A | q T U = LSpan W q A | q U
31 1 25 2 lssats W LMod T S T = LSpan W q A | q T
32 3 4 31 syl2anc φ T = LSpan W q A | q T
33 32 adantr φ q A | q U q A | q T T = LSpan W q A | q T
34 27 30 33 3sstr4d φ q A | q U q A | q T U T
35 34 ex φ q A | q U q A | q T U T
36 12 35 biimtrrid φ q A q U q T U T
37 11 36 biimtrrid φ q A ¬ q U ¬ q T U T
38 9 37 mtod φ ¬ q A ¬ q U ¬ q T
39 dfrex2 q A q U ¬ q T ¬ q A ¬ q U ¬ q T
40 38 39 sylibr φ q A q U ¬ q T