Metamath Proof Explorer


Theorem lssat

Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses lssat.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
Assertion lssat ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ 𝑈𝑉 ) → ∃ 𝑝𝐴 ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )

Proof

Step Hyp Ref Expression
1 lssat.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lssat.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 dfpss3 ( 𝑈𝑉 ↔ ( 𝑈𝑉 ∧ ¬ 𝑉𝑈 ) )
4 3 simprbi ( 𝑈𝑉 → ¬ 𝑉𝑈 )
5 ss2rab ( { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ↔ ∀ 𝑝𝐴 ( 𝑝𝑉𝑝𝑈 ) )
6 iman ( ( 𝑝𝑉𝑝𝑈 ) ↔ ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )
7 6 ralbii ( ∀ 𝑝𝐴 ( 𝑝𝑉𝑝𝑈 ) ↔ ∀ 𝑝𝐴 ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )
8 5 7 bitr2i ( ∀ 𝑝𝐴 ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) ↔ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } )
9 simpl1 ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑊 ∈ LMod )
10 1 2 lsatlss ( 𝑊 ∈ LMod → 𝐴𝑆 )
11 rabss2 ( 𝐴𝑆 → { 𝑝𝐴𝑝𝑈 } ⊆ { 𝑝𝑆𝑝𝑈 } )
12 uniss ( { 𝑝𝐴𝑝𝑈 } ⊆ { 𝑝𝑆𝑝𝑈 } → { 𝑝𝐴𝑝𝑈 } ⊆ { 𝑝𝑆𝑝𝑈 } )
13 9 10 11 12 4syl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → { 𝑝𝐴𝑝𝑈 } ⊆ { 𝑝𝑆𝑝𝑈 } )
14 simpl2 ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑈𝑆 )
15 unimax ( 𝑈𝑆 { 𝑝𝑆𝑝𝑈 } = 𝑈 )
16 14 15 syl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → { 𝑝𝑆𝑝𝑈 } = 𝑈 )
17 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
18 17 1 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
19 14 18 syl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) )
20 16 19 eqsstrd ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → { 𝑝𝑆𝑝𝑈 } ⊆ ( Base ‘ 𝑊 ) )
21 13 20 sstrd ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → { 𝑝𝐴𝑝𝑈 } ⊆ ( Base ‘ 𝑊 ) )
22 uniss ( { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } → { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } )
23 22 adantl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } )
24 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
25 17 24 lspss ( ( 𝑊 ∈ LMod ∧ { 𝑝𝐴𝑝𝑈 } ⊆ ( Base ‘ 𝑊 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑈 } ) )
26 9 21 23 25 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑈 } ) )
27 simpl3 ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑉𝑆 )
28 1 24 2 lssats ( ( 𝑊 ∈ LMod ∧ 𝑉𝑆 ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑉 } ) )
29 9 27 28 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑉 } ) )
30 1 24 2 lssats ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑈 } ) )
31 9 14 30 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑝𝐴𝑝𝑈 } ) )
32 26 29 31 3sstr4d ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } ) → 𝑉𝑈 )
33 32 ex ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) → ( { 𝑝𝐴𝑝𝑉 } ⊆ { 𝑝𝐴𝑝𝑈 } → 𝑉𝑈 ) )
34 8 33 syl5bi ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) → ( ∀ 𝑝𝐴 ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) → 𝑉𝑈 ) )
35 34 con3dimp ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ ¬ 𝑉𝑈 ) → ¬ ∀ 𝑝𝐴 ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )
36 dfrex2 ( ∃ 𝑝𝐴 ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) ↔ ¬ ∀ 𝑝𝐴 ¬ ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )
37 35 36 sylibr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ ¬ 𝑉𝑈 ) → ∃ 𝑝𝐴 ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )
38 4 37 sylan2 ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆 ) ∧ 𝑈𝑉 ) → ∃ 𝑝𝐴 ( 𝑝𝑉 ∧ ¬ 𝑝𝑈 ) )