| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lssat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 3 |
|
dfpss3 |
⊢ ( 𝑈 ⊊ 𝑉 ↔ ( 𝑈 ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ 𝑈 ) ) |
| 4 |
3
|
simprbi |
⊢ ( 𝑈 ⊊ 𝑉 → ¬ 𝑉 ⊆ 𝑈 ) |
| 5 |
|
ss2rab |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ) |
| 6 |
|
iman |
⊢ ( ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ↔ ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
| 7 |
6
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ↔ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
| 8 |
5 7
|
bitr2i |
⊢ ( ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ↔ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
| 9 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑊 ∈ LMod ) |
| 10 |
1 2
|
lsatlss |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |
| 11 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝑆 → { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
| 12 |
|
uniss |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
| 13 |
9 10 11 12
|
4syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
| 14 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 ∈ 𝑆 ) |
| 15 |
|
unimax |
⊢ ( 𝑈 ∈ 𝑆 → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } = 𝑈 ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } = 𝑈 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 18 |
17 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 19 |
14 18
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 20 |
16 19
|
eqsstrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ) |
| 21 |
13 20
|
sstrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ) |
| 22 |
|
uniss |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
| 24 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 25 |
17 24
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ∧ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
| 26 |
9 21 23 25
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
| 27 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 ∈ 𝑆 ) |
| 28 |
1 24 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ 𝑆 ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ) |
| 29 |
9 27 28
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ) |
| 30 |
1 24 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
| 31 |
9 14 30
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
| 32 |
26 29 31
|
3sstr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 ⊆ 𝑈 ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) → ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } → 𝑉 ⊆ 𝑈 ) ) |
| 34 |
8 33
|
biimtrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) → ( ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) ) |
| 35 |
34
|
con3dimp |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ ¬ 𝑉 ⊆ 𝑈 ) → ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
| 36 |
|
dfrex2 |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ↔ ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ ¬ 𝑉 ⊆ 𝑈 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
| 38 |
4 37
|
sylan2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ 𝑈 ⊊ 𝑉 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |