Step |
Hyp |
Ref |
Expression |
1 |
|
lssat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lssat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
dfpss3 |
⊢ ( 𝑈 ⊊ 𝑉 ↔ ( 𝑈 ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ 𝑈 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑈 ⊊ 𝑉 → ¬ 𝑉 ⊆ 𝑈 ) |
5 |
|
ss2rab |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ) |
6 |
|
iman |
⊢ ( ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ↔ ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈 ) ↔ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
8 |
5 7
|
bitr2i |
⊢ ( ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ↔ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑊 ∈ LMod ) |
10 |
1 2
|
lsatlss |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |
11 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝑆 → { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
12 |
|
uniss |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
13 |
9 10 11 12
|
4syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ) |
14 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 ∈ 𝑆 ) |
15 |
|
unimax |
⊢ ( 𝑈 ∈ 𝑆 → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } = 𝑈 ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } = 𝑈 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
18 |
17 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
19 |
14 18
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
20 |
16 19
|
eqsstrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ) |
21 |
13 20
|
sstrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ) |
22 |
|
uniss |
⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) |
24 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
25 |
17 24
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ⊆ ( Base ‘ 𝑊 ) ∧ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
26 |
9 21 23 25
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
27 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 ∈ 𝑆 ) |
28 |
1 24 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ 𝑆 ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ) |
29 |
9 27 28
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ) ) |
30 |
1 24 2
|
lssats |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
31 |
9 14 30
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ ∪ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) ) |
32 |
26 29 31
|
3sstr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } ) → 𝑉 ⊆ 𝑈 ) |
33 |
32
|
ex |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) → ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈 } → 𝑉 ⊆ 𝑈 ) ) |
34 |
8 33
|
syl5bi |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) → ( ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) ) |
35 |
34
|
con3dimp |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ ¬ 𝑉 ⊆ 𝑈 ) → ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
36 |
|
dfrex2 |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ↔ ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
37 |
35 36
|
sylibr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ ¬ 𝑉 ⊆ 𝑈 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |
38 |
4 37
|
sylan2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆 ) ∧ 𝑈 ⊊ 𝑉 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈 ) ) |