Step |
Hyp |
Ref |
Expression |
1 |
|
islshpat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
islshpat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
islshpat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
islshpat.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
islshpat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
6 |
|
islshpat.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
8 |
1 7 2 3 4 6
|
islshpsm |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
9 |
|
df-3an |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
10 |
|
r19.42v |
⊢ ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → 𝑣 = ( 0g ‘ 𝑊 ) ) |
14 |
13
|
sneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → { 𝑣 } = { ( 0g ‘ 𝑊 ) } ) |
15 |
14
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) = ( ( LSpan ‘ 𝑊 ) ‘ { ( 0g ‘ 𝑊 ) } ) ) |
16 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
18 |
17 7
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
19 |
16 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
20 |
15 19
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) = { ( 0g ‘ 𝑊 ) } ) |
21 |
20
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( 𝑈 ⊕ { ( 0g ‘ 𝑊 ) } ) ) |
22 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → 𝑈 ∈ 𝑆 ) |
23 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
24 |
16 22 23
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
25 |
17 3
|
lsm01 |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑈 ⊕ { ( 0g ‘ 𝑊 ) } ) = 𝑈 ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( 𝑈 ⊕ { ( 0g ‘ 𝑊 ) } ) = 𝑈 ) |
27 |
21 26
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑈 ) |
28 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → 𝑈 ≠ 𝑉 ) |
29 |
27 28
|
eqnetrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) ∧ 𝑣 = ( 0g ‘ 𝑊 ) ) → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ≠ 𝑉 ) |
30 |
29
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) → ( 𝑣 = ( 0g ‘ 𝑊 ) → ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ≠ 𝑉 ) ) |
31 |
30
|
necon2d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) → ( ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 → 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) |
32 |
31
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ) → ( ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ↔ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
33 |
32
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
34 |
33
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) ) |
35 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ↔ ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) |
36 |
35
|
anbi1i |
⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
37 |
|
anass |
⊢ ( ( ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
38 |
|
an12 |
⊢ ( ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
39 |
38
|
anbi2i |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
40 |
37 39
|
bitri |
⊢ ( ( ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
41 |
36 40
|
bitr2i |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑣 ≠ ( 0g ‘ 𝑊 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ↔ ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
42 |
34 41
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
43 |
42
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑣 ( 𝑣 ∈ 𝑉 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
44 |
12 43
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
45 |
|
fvex |
⊢ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∈ V |
46 |
45
|
rexcom4b |
⊢ ( ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ∧ 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
47 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
48 |
46 47
|
bitr2i |
⊢ ( ∃ 𝑣 ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ∧ 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
49 |
|
ancom |
⊢ ( ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ∧ 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
50 |
49
|
rexbii |
⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ∧ 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
51 |
50
|
exbii |
⊢ ( ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ∧ 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
52 |
48 51
|
bitri |
⊢ ( ∃ 𝑣 ( 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ↔ ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
53 |
44 52
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) ) |
54 |
|
r19.41v |
⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) |
55 |
|
oveq2 |
⊢ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 ⊕ 𝑞 ) = ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑈 ⊕ 𝑞 ) = 𝑉 ↔ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
58 |
57
|
pm5.32i |
⊢ ( ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
59 |
58
|
rexbii |
⊢ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
60 |
54 59
|
bitr3i |
⊢ ( ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
61 |
60
|
exbii |
⊢ ( ∃ 𝑞 ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ∃ 𝑞 ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ( 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ) ) |
62 |
53 61
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑞 ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) ) |
63 |
1 7 17 5
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( 𝑞 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
64 |
6 63
|
syl |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
65 |
64
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) ) |
66 |
65
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ∃ 𝑞 ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑞 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) ) |
67 |
62 66
|
bitr4d |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) ) |
68 |
11 67
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) ) |
69 |
|
df-3an |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) |
70 |
|
r19.42v |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ↔ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) |
71 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) |
72 |
70 71
|
bitr3i |
⊢ ( ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ↔ ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) |
73 |
69 72
|
bitr2i |
⊢ ( ∃ 𝑞 ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) |
74 |
68 73
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑈 ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = 𝑉 ) ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) |
75 |
8 74
|
bitrd |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑈 ⊕ 𝑞 ) = 𝑉 ) ) ) |