Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexcom4b.1 | ⊢ 𝐵 ∈ V | |
Assertion | rexcom4b | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4b.1 | ⊢ 𝐵 ∈ V | |
2 | rexcom4a | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ ∃ 𝑥 𝑥 = 𝐵 ) ) | |
3 | 1 | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐵 |
4 | 3 | biantru | ⊢ ( 𝜑 ↔ ( 𝜑 ∧ ∃ 𝑥 𝑥 = 𝐵 ) ) |
5 | 4 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ ∃ 𝑥 𝑥 = 𝐵 ) ) |
6 | 2 5 | bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 𝜑 ) |