Metamath Proof Explorer


Theorem rexcom4b

Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)

Ref Expression
Hypothesis rexcom4b.1
|- B e. _V
Assertion rexcom4b
|- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )

Proof

Step Hyp Ref Expression
1 rexcom4b.1
 |-  B e. _V
2 rexcom4a
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ E. x x = B ) )
3 1 isseti
 |-  E. x x = B
4 3 biantru
 |-  ( ph <-> ( ph /\ E. x x = B ) )
5 4 rexbii
 |-  ( E. y e. A ph <-> E. y e. A ( ph /\ E. x x = B ) )
6 2 5 bitr4i
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )