Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexcom4b.1 | |- B e. _V |
|
Assertion | rexcom4b | |- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4b.1 | |- B e. _V |
|
2 | rexcom4a | |- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ E. x x = B ) ) |
|
3 | 1 | isseti | |- E. x x = B |
4 | 3 | biantru | |- ( ph <-> ( ph /\ E. x x = B ) ) |
5 | 4 | rexbii | |- ( E. y e. A ph <-> E. y e. A ( ph /\ E. x x = B ) ) |
6 | 2 5 | bitr4i | |- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph ) |