Metamath Proof Explorer


Theorem rexcom4b

Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011)

Ref Expression
Hypothesis rexcom4b.1 B V
Assertion rexcom4b x y A φ x = B y A φ

Proof

Step Hyp Ref Expression
1 rexcom4b.1 B V
2 rexcom4a x y A φ x = B y A φ x x = B
3 1 isseti x x = B
4 3 biantru φ φ x x = B
5 4 rexbii y A φ y A φ x x = B
6 2 5 bitr4i x y A φ x = B y A φ