Metamath Proof Explorer


Theorem ceqsalt

Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Assertion ceqsalt xψxx=AφψAVxx=Aφψ

Proof

Step Hyp Ref Expression
1 biimp φψφψ
2 1 imim3i x=Aφψx=Aφx=Aψ
3 2 al2imi xx=Aφψxx=Aφxx=Aψ
4 elisset AVxx=A
5 19.23t xψxx=Aψxx=Aψ
6 5 biimpd xψxx=Aψxx=Aψ
7 4 6 syl7 xψxx=AψAVψ
8 3 7 sylan9r xψxx=Aφψxx=AφAVψ
9 8 com23 xψxx=AφψAVxx=Aφψ
10 9 3impia xψxx=AφψAVxx=Aφψ
11 ceqsal1t xψxx=Aφψψxx=Aφ
12 11 3adant3 xψxx=AφψAVψxx=Aφ
13 10 12 impbid xψxx=AφψAVxx=Aφψ