Step |
Hyp |
Ref |
Expression |
1 |
|
islshpat.v |
|- V = ( Base ` W ) |
2 |
|
islshpat.s |
|- S = ( LSubSp ` W ) |
3 |
|
islshpat.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
islshpat.h |
|- H = ( LSHyp ` W ) |
5 |
|
islshpat.a |
|- A = ( LSAtoms ` W ) |
6 |
|
islshpat.w |
|- ( ph -> W e. LMod ) |
7 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
8 |
1 7 2 3 4 6
|
islshpsm |
|- ( ph -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
9 |
|
df-3an |
|- ( ( U e. S /\ U =/= V /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
10 |
|
r19.42v |
|- ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
11 |
9 10
|
bitr4i |
|- ( ( U e. S /\ U =/= V /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
12 |
|
df-rex |
|- ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. v ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
13 |
|
simpr |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> v = ( 0g ` W ) ) |
14 |
13
|
sneqd |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> { v } = { ( 0g ` W ) } ) |
15 |
14
|
fveq2d |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( ( LSpan ` W ) ` { v } ) = ( ( LSpan ` W ) ` { ( 0g ` W ) } ) ) |
16 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> W e. LMod ) |
17 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
18 |
17 7
|
lspsn0 |
|- ( W e. LMod -> ( ( LSpan ` W ) ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
19 |
16 18
|
syl |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( ( LSpan ` W ) ` { ( 0g ` W ) } ) = { ( 0g ` W ) } ) |
20 |
15 19
|
eqtrd |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( ( LSpan ` W ) ` { v } ) = { ( 0g ` W ) } ) |
21 |
20
|
oveq2d |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = ( U .(+) { ( 0g ` W ) } ) ) |
22 |
|
simplrl |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> U e. S ) |
23 |
2
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
24 |
16 22 23
|
syl2anc |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> U e. ( SubGrp ` W ) ) |
25 |
17 3
|
lsm01 |
|- ( U e. ( SubGrp ` W ) -> ( U .(+) { ( 0g ` W ) } ) = U ) |
26 |
24 25
|
syl |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( U .(+) { ( 0g ` W ) } ) = U ) |
27 |
21 26
|
eqtrd |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = U ) |
28 |
|
simplrr |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> U =/= V ) |
29 |
27 28
|
eqnetrd |
|- ( ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) /\ v = ( 0g ` W ) ) -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) =/= V ) |
30 |
29
|
ex |
|- ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) -> ( v = ( 0g ` W ) -> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) =/= V ) ) |
31 |
30
|
necon2d |
|- ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) -> ( ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V -> v =/= ( 0g ` W ) ) ) |
32 |
31
|
pm4.71rd |
|- ( ( ( ph /\ v e. V ) /\ ( U e. S /\ U =/= V ) ) -> ( ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V <-> ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
33 |
32
|
pm5.32da |
|- ( ( ph /\ v e. V ) -> ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
34 |
33
|
pm5.32da |
|- ( ph -> ( ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) ) |
35 |
|
eldifsn |
|- ( v e. ( V \ { ( 0g ` W ) } ) <-> ( v e. V /\ v =/= ( 0g ` W ) ) ) |
36 |
35
|
anbi1i |
|- ( ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( ( v e. V /\ v =/= ( 0g ` W ) ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
37 |
|
anass |
|- ( ( ( v e. V /\ v =/= ( 0g ` W ) ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( v e. V /\ ( v =/= ( 0g ` W ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
38 |
|
an12 |
|- ( ( v =/= ( 0g ` W ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
39 |
38
|
anbi2i |
|- ( ( v e. V /\ ( v =/= ( 0g ` W ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) <-> ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
40 |
37 39
|
bitri |
|- ( ( ( v e. V /\ v =/= ( 0g ` W ) ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
41 |
36 40
|
bitr2i |
|- ( ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( v =/= ( 0g ` W ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) <-> ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
42 |
34 41
|
bitrdi |
|- ( ph -> ( ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
43 |
42
|
exbidv |
|- ( ph -> ( E. v ( v e. V /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> E. v ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
44 |
12 43
|
syl5bb |
|- ( ph -> ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. v ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
45 |
|
fvex |
|- ( ( LSpan ` W ) ` { v } ) e. _V |
46 |
45
|
rexcom4b |
|- ( E. q E. v e. ( V \ { ( 0g ` W ) } ) ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) /\ q = ( ( LSpan ` W ) ` { v } ) ) <-> E. v e. ( V \ { ( 0g ` W ) } ) ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
47 |
|
df-rex |
|- ( E. v e. ( V \ { ( 0g ` W ) } ) ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. v ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
48 |
46 47
|
bitr2i |
|- ( E. v ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> E. q E. v e. ( V \ { ( 0g ` W ) } ) ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) /\ q = ( ( LSpan ` W ) ` { v } ) ) ) |
49 |
|
ancom |
|- ( ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) /\ q = ( ( LSpan ` W ) ` { v } ) ) <-> ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
50 |
49
|
rexbii |
|- ( E. v e. ( V \ { ( 0g ` W ) } ) ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) /\ q = ( ( LSpan ` W ) ` { v } ) ) <-> E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
51 |
50
|
exbii |
|- ( E. q E. v e. ( V \ { ( 0g ` W ) } ) ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) /\ q = ( ( LSpan ` W ) ` { v } ) ) <-> E. q E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
52 |
48 51
|
bitri |
|- ( E. v ( v e. ( V \ { ( 0g ` W ) } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) <-> E. q E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
53 |
44 52
|
bitrdi |
|- ( ph -> ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. q E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) ) |
54 |
|
r19.41v |
|- ( E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) |
55 |
|
oveq2 |
|- ( q = ( ( LSpan ` W ) ` { v } ) -> ( U .(+) q ) = ( U .(+) ( ( LSpan ` W ) ` { v } ) ) ) |
56 |
55
|
eqeq1d |
|- ( q = ( ( LSpan ` W ) ` { v } ) -> ( ( U .(+) q ) = V <-> ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) |
57 |
56
|
anbi2d |
|- ( q = ( ( LSpan ` W ) ` { v } ) -> ( ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
58 |
57
|
pm5.32i |
|- ( ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
59 |
58
|
rexbii |
|- ( E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
60 |
54 59
|
bitr3i |
|- ( ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
61 |
60
|
exbii |
|- ( E. q ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> E. q E. v e. ( V \ { ( 0g ` W ) } ) ( q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) ) ) |
62 |
53 61
|
bitr4di |
|- ( ph -> ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. q ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) ) |
63 |
1 7 17 5
|
islsat |
|- ( W e. LMod -> ( q e. A <-> E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) ) ) |
64 |
6 63
|
syl |
|- ( ph -> ( q e. A <-> E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) ) ) |
65 |
64
|
anbi1d |
|- ( ph -> ( ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) ) |
66 |
65
|
exbidv |
|- ( ph -> ( E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> E. q ( E. v e. ( V \ { ( 0g ` W ) } ) q = ( ( LSpan ` W ) ` { v } ) /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) ) |
67 |
62 66
|
bitr4d |
|- ( ph -> ( E. v e. V ( ( U e. S /\ U =/= V ) /\ ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) ) |
68 |
11 67
|
syl5bb |
|- ( ph -> ( ( U e. S /\ U =/= V /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) ) |
69 |
|
df-3an |
|- ( ( U e. S /\ U =/= V /\ E. q e. A ( U .(+) q ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ E. q e. A ( U .(+) q ) = V ) ) |
70 |
|
r19.42v |
|- ( E. q e. A ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) <-> ( ( U e. S /\ U =/= V ) /\ E. q e. A ( U .(+) q ) = V ) ) |
71 |
|
df-rex |
|- ( E. q e. A ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) <-> E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) |
72 |
70 71
|
bitr3i |
|- ( ( ( U e. S /\ U =/= V ) /\ E. q e. A ( U .(+) q ) = V ) <-> E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) ) |
73 |
69 72
|
bitr2i |
|- ( E. q ( q e. A /\ ( ( U e. S /\ U =/= V ) /\ ( U .(+) q ) = V ) ) <-> ( U e. S /\ U =/= V /\ E. q e. A ( U .(+) q ) = V ) ) |
74 |
68 73
|
bitrdi |
|- ( ph -> ( ( U e. S /\ U =/= V /\ E. v e. V ( U .(+) ( ( LSpan ` W ) ` { v } ) ) = V ) <-> ( U e. S /\ U =/= V /\ E. q e. A ( U .(+) q ) = V ) ) ) |
75 |
8 74
|
bitrd |
|- ( ph -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. q e. A ( U .(+) q ) = V ) ) ) |