Metamath Proof Explorer


Theorem r19.41v

Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)

Ref Expression
Assertion r19.41v
|- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 anass
 |-  ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) )
2 1 exbii
 |-  ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
3 19.41v
 |-  ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
4 2 3 bitr3i
 |-  ( E. x ( x e. A /\ ( ph /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
5 df-rex
 |-  ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
6 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
7 6 anbi1i
 |-  ( ( E. x e. A ph /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
8 4 5 7 3bitr4i
 |-  ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) )