Metamath Proof Explorer


Theorem r19.41

Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)

Ref Expression
Hypothesis r19.41.1
|- F/ x ps
Assertion r19.41
|- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 r19.41.1
 |-  F/ x ps
2 anass
 |-  ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) )
3 2 exbii
 |-  ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
4 1 19.41
 |-  ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
5 3 4 bitr3i
 |-  ( E. x ( x e. A /\ ( ph /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
6 df-rex
 |-  ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
7 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
8 7 anbi1i
 |-  ( ( E. x e. A ph /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) )
9 5 6 8 3bitr4i
 |-  ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) )