Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglbcl.b | |- B = ( Base ` K ) |
|
| clatglbcl.g | |- G = ( glb ` K ) |
||
| Assertion | clatglbcl | |- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglbcl.b | |- B = ( Base ` K ) |
|
| 2 | clatglbcl.g | |- G = ( glb ` K ) |
|
| 3 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 4 | 1 3 2 | clatlem | |- ( ( K e. CLat /\ S C_ B ) -> ( ( ( lub ` K ) ` S ) e. B /\ ( G ` S ) e. B ) ) |
| 5 | 4 | simprd | |- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |