| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clatglbcl.b |
|- B = ( Base ` K ) |
| 2 |
|
clatglbcl.g |
|- G = ( glb ` K ) |
| 3 |
1
|
fvexi |
|- B e. _V |
| 4 |
3
|
elpw2 |
|- ( S e. ~P B <-> S C_ B ) |
| 5 |
4
|
biimpri |
|- ( S C_ B -> S e. ~P B ) |
| 6 |
5
|
adantl |
|- ( ( K e. CLat /\ S C_ B ) -> S e. ~P B ) |
| 7 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 8 |
1 7 2
|
isclat |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) ) |
| 9 |
|
simprr |
|- ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) -> dom G = ~P B ) |
| 10 |
8 9
|
sylbi |
|- ( K e. CLat -> dom G = ~P B ) |
| 11 |
10
|
adantr |
|- ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B ) |
| 12 |
6 11
|
eleqtrrd |
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |