| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oduclatb.d |
|- D = ( ODual ` O ) |
| 2 |
|
elex |
|- ( O e. CLat -> O e. _V ) |
| 3 |
|
noel |
|- -. ( ( lub ` (/) ) ` (/) ) e. (/) |
| 4 |
|
ssid |
|- (/) C_ (/) |
| 5 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 6 |
|
eqid |
|- ( lub ` (/) ) = ( lub ` (/) ) |
| 7 |
5 6
|
clatlubcl |
|- ( ( (/) e. CLat /\ (/) C_ (/) ) -> ( ( lub ` (/) ) ` (/) ) e. (/) ) |
| 8 |
4 7
|
mpan2 |
|- ( (/) e. CLat -> ( ( lub ` (/) ) ` (/) ) e. (/) ) |
| 9 |
3 8
|
mto |
|- -. (/) e. CLat |
| 10 |
|
fvprc |
|- ( -. O e. _V -> ( ODual ` O ) = (/) ) |
| 11 |
1 10
|
eqtrid |
|- ( -. O e. _V -> D = (/) ) |
| 12 |
11
|
eleq1d |
|- ( -. O e. _V -> ( D e. CLat <-> (/) e. CLat ) ) |
| 13 |
9 12
|
mtbiri |
|- ( -. O e. _V -> -. D e. CLat ) |
| 14 |
13
|
con4i |
|- ( D e. CLat -> O e. _V ) |
| 15 |
1
|
oduposb |
|- ( O e. _V -> ( O e. Poset <-> D e. Poset ) ) |
| 16 |
|
ancom |
|- ( ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) <-> ( dom ( glb ` O ) = ~P ( Base ` O ) /\ dom ( lub ` O ) = ~P ( Base ` O ) ) ) |
| 17 |
|
eqid |
|- ( glb ` O ) = ( glb ` O ) |
| 18 |
1 17
|
odulub |
|- ( O e. _V -> ( glb ` O ) = ( lub ` D ) ) |
| 19 |
18
|
dmeqd |
|- ( O e. _V -> dom ( glb ` O ) = dom ( lub ` D ) ) |
| 20 |
19
|
eqeq1d |
|- ( O e. _V -> ( dom ( glb ` O ) = ~P ( Base ` O ) <-> dom ( lub ` D ) = ~P ( Base ` O ) ) ) |
| 21 |
|
eqid |
|- ( lub ` O ) = ( lub ` O ) |
| 22 |
1 21
|
oduglb |
|- ( O e. _V -> ( lub ` O ) = ( glb ` D ) ) |
| 23 |
22
|
dmeqd |
|- ( O e. _V -> dom ( lub ` O ) = dom ( glb ` D ) ) |
| 24 |
23
|
eqeq1d |
|- ( O e. _V -> ( dom ( lub ` O ) = ~P ( Base ` O ) <-> dom ( glb ` D ) = ~P ( Base ` O ) ) ) |
| 25 |
20 24
|
anbi12d |
|- ( O e. _V -> ( ( dom ( glb ` O ) = ~P ( Base ` O ) /\ dom ( lub ` O ) = ~P ( Base ` O ) ) <-> ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 26 |
16 25
|
bitrid |
|- ( O e. _V -> ( ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) <-> ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 27 |
15 26
|
anbi12d |
|- ( O e. _V -> ( ( O e. Poset /\ ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) ) <-> ( D e. Poset /\ ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) ) |
| 28 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
| 29 |
28 21 17
|
isclat |
|- ( O e. CLat <-> ( O e. Poset /\ ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) ) ) |
| 30 |
1 28
|
odubas |
|- ( Base ` O ) = ( Base ` D ) |
| 31 |
|
eqid |
|- ( lub ` D ) = ( lub ` D ) |
| 32 |
|
eqid |
|- ( glb ` D ) = ( glb ` D ) |
| 33 |
30 31 32
|
isclat |
|- ( D e. CLat <-> ( D e. Poset /\ ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 34 |
27 29 33
|
3bitr4g |
|- ( O e. _V -> ( O e. CLat <-> D e. CLat ) ) |
| 35 |
2 14 34
|
pm5.21nii |
|- ( O e. CLat <-> D e. CLat ) |