Metamath Proof Explorer


Theorem odubas

Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses oduval.d
|- D = ( ODual ` O )
odubas.b
|- B = ( Base ` O )
Assertion odubas
|- B = ( Base ` D )

Proof

Step Hyp Ref Expression
1 oduval.d
 |-  D = ( ODual ` O )
2 odubas.b
 |-  B = ( Base ` O )
3 baseid
 |-  Base = Slot ( Base ` ndx )
4 plendxnbasendx
 |-  ( le ` ndx ) =/= ( Base ` ndx )
5 4 necomi
 |-  ( Base ` ndx ) =/= ( le ` ndx )
6 3 5 setsnid
 |-  ( Base ` O ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) )
7 eqid
 |-  ( le ` O ) = ( le ` O )
8 1 7 oduval
 |-  D = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. )
9 8 fveq2i
 |-  ( Base ` D ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) )
10 6 2 9 3eqtr4i
 |-  B = ( Base ` D )