Step |
Hyp |
Ref |
Expression |
1 |
|
oduval.d |
|- D = ( ODual ` O ) |
2 |
|
odubas.b |
|- B = ( Base ` O ) |
3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
4 |
|
plendxnbasendx |
|- ( le ` ndx ) =/= ( Base ` ndx ) |
5 |
4
|
necomi |
|- ( Base ` ndx ) =/= ( le ` ndx ) |
6 |
3 5
|
setsnid |
|- ( Base ` O ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
7 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
8 |
1 7
|
oduval |
|- D = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
9 |
8
|
fveq2i |
|- ( Base ` D ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
10 |
6 2 9
|
3eqtr4i |
|- B = ( Base ` D ) |