Metamath Proof Explorer


Theorem odubas

Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses oduval.d D = ODual O
odubas.b B = Base O
Assertion odubas B = Base D

Proof

Step Hyp Ref Expression
1 oduval.d D = ODual O
2 odubas.b B = Base O
3 baseid Base = Slot Base ndx
4 plendxnbasendx ndx Base ndx
5 4 necomi Base ndx ndx
6 3 5 setsnid Base O = Base O sSet ndx O -1
7 eqid O = O
8 1 7 oduval D = O sSet ndx O -1
9 8 fveq2i Base D = Base O sSet ndx O -1
10 6 2 9 3eqtr4i B = Base D