| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oduval.d | ⊢ 𝐷  =  ( ODual ‘ 𝑂 ) | 
						
							| 2 |  | odubas.b | ⊢ 𝐵  =  ( Base ‘ 𝑂 ) | 
						
							| 3 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 4 |  | plendxnbasendx | ⊢ ( le ‘ ndx )  ≠  ( Base ‘ ndx ) | 
						
							| 5 | 4 | necomi | ⊢ ( Base ‘ ndx )  ≠  ( le ‘ ndx ) | 
						
							| 6 | 3 5 | setsnid | ⊢ ( Base ‘ 𝑂 )  =  ( Base ‘ ( 𝑂  sSet  〈 ( le ‘ ndx ) ,  ◡ ( le ‘ 𝑂 ) 〉 ) ) | 
						
							| 7 |  | eqid | ⊢ ( le ‘ 𝑂 )  =  ( le ‘ 𝑂 ) | 
						
							| 8 | 1 7 | oduval | ⊢ 𝐷  =  ( 𝑂  sSet  〈 ( le ‘ ndx ) ,  ◡ ( le ‘ 𝑂 ) 〉 ) | 
						
							| 9 | 8 | fveq2i | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ ( 𝑂  sSet  〈 ( le ‘ ndx ) ,  ◡ ( le ‘ 𝑂 ) 〉 ) ) | 
						
							| 10 | 6 2 9 | 3eqtr4i | ⊢ 𝐵  =  ( Base ‘ 𝐷 ) |