Metamath Proof Explorer


Theorem oduval

Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D=ODualO
oduval.l ˙=O
Assertion oduval D=OsSetndx˙-1

Proof

Step Hyp Ref Expression
1 oduval.d D=ODualO
2 oduval.l ˙=O
3 id a=Oa=O
4 fveq2 a=Oa=O
5 4 cnveqd a=Oa-1=O-1
6 5 opeq2d a=Ondxa-1=ndxO-1
7 3 6 oveq12d a=OasSetndxa-1=OsSetndxO-1
8 df-odu ODual=aVasSetndxa-1
9 ovex OsSetndxO-1V
10 7 8 9 fvmpt OVODualO=OsSetndxO-1
11 fvprc ¬OVODualO=
12 reldmsets ReldomsSet
13 12 ovprc1 ¬OVOsSetndxO-1=
14 11 13 eqtr4d ¬OVODualO=OsSetndxO-1
15 10 14 pm2.61i ODualO=OsSetndxO-1
16 2 cnveqi ˙-1=O-1
17 16 opeq2i ndx˙-1=ndxO-1
18 17 oveq2i OsSetndx˙-1=OsSetndxO-1
19 15 1 18 3eqtr4i D=OsSetndx˙-1