Metamath Proof Explorer


Theorem oduleval

Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D=ODualO
oduval.l ˙=O
Assertion oduleval ˙-1=D

Proof

Step Hyp Ref Expression
1 oduval.d D=ODualO
2 oduval.l ˙=O
3 fvex OV
4 3 cnvex O-1V
5 pleid le=Slotndx
6 5 setsid OVO-1VO-1=OsSetndxO-1
7 4 6 mpan2 OVO-1=OsSetndxO-1
8 5 str0 =
9 fvprc ¬OVO=
10 9 cnveqd ¬OVO-1=-1
11 cnv0 -1=
12 10 11 eqtrdi ¬OVO-1=
13 reldmsets ReldomsSet
14 13 ovprc1 ¬OVOsSetndxO-1=
15 14 fveq2d ¬OVOsSetndxO-1=
16 8 12 15 3eqtr4a ¬OVO-1=OsSetndxO-1
17 7 16 pm2.61i O-1=OsSetndxO-1
18 2 cnveqi ˙-1=O-1
19 eqid O=O
20 1 19 oduval D=OsSetndxO-1
21 20 fveq2i D=OsSetndxO-1
22 17 18 21 3eqtr4i ˙-1=D