| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 2 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 3 |
|
simpl |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> K e. Poset ) |
| 4 |
1 2 3
|
joindmss |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> dom ( join ` K ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 5 |
|
relxp |
|- Rel ( ( Base ` K ) X. ( Base ` K ) ) |
| 6 |
5
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> Rel ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 7 |
|
opelxp |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) <-> ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) |
| 8 |
|
vex |
|- x e. _V |
| 9 |
|
vex |
|- y e. _V |
| 10 |
8 9
|
prss |
|- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) <-> { x , y } C_ ( Base ` K ) ) |
| 11 |
7 10
|
sylbb |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } C_ ( Base ` K ) ) |
| 12 |
|
prex |
|- { x , y } e. _V |
| 13 |
12
|
elpw |
|- ( { x , y } e. ~P ( Base ` K ) <-> { x , y } C_ ( Base ` K ) ) |
| 14 |
11 13
|
sylibr |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. ~P ( Base ` K ) ) |
| 15 |
|
eleq2 |
|- ( dom ( lub ` K ) = ~P ( Base ` K ) -> ( { x , y } e. dom ( lub ` K ) <-> { x , y } e. ~P ( Base ` K ) ) ) |
| 16 |
14 15
|
imbitrrid |
|- ( dom ( lub ` K ) = ~P ( Base ` K ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( lub ` K ) ) ) |
| 17 |
16
|
adantl |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( lub ` K ) ) ) |
| 18 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 19 |
8
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> x e. _V ) |
| 20 |
9
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> y e. _V ) |
| 21 |
18 2 3 19 20
|
joindef |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. dom ( join ` K ) <-> { x , y } e. dom ( lub ` K ) ) ) |
| 22 |
17 21
|
sylibrd |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> <. x , y >. e. dom ( join ` K ) ) ) |
| 23 |
6 22
|
relssdv |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( ( Base ` K ) X. ( Base ` K ) ) C_ dom ( join ` K ) ) |
| 24 |
4 23
|
eqssd |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 25 |
24
|
ex |
|- ( K e. Poset -> ( dom ( lub ` K ) = ~P ( Base ` K ) -> dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 26 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 27 |
|
simpl |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> K e. Poset ) |
| 28 |
1 26 27
|
meetdmss |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> dom ( meet ` K ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 29 |
5
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> Rel ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 30 |
|
eleq2 |
|- ( dom ( glb ` K ) = ~P ( Base ` K ) -> ( { x , y } e. dom ( glb ` K ) <-> { x , y } e. ~P ( Base ` K ) ) ) |
| 31 |
14 30
|
imbitrrid |
|- ( dom ( glb ` K ) = ~P ( Base ` K ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( glb ` K ) ) ) |
| 32 |
31
|
adantl |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( glb ` K ) ) ) |
| 33 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
| 34 |
8
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> x e. _V ) |
| 35 |
9
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> y e. _V ) |
| 36 |
33 26 27 34 35
|
meetdef |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. dom ( meet ` K ) <-> { x , y } e. dom ( glb ` K ) ) ) |
| 37 |
32 36
|
sylibrd |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> <. x , y >. e. dom ( meet ` K ) ) ) |
| 38 |
29 37
|
relssdv |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( ( Base ` K ) X. ( Base ` K ) ) C_ dom ( meet ` K ) ) |
| 39 |
28 38
|
eqssd |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 40 |
39
|
ex |
|- ( K e. Poset -> ( dom ( glb ` K ) = ~P ( Base ` K ) -> dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 41 |
25 40
|
anim12d |
|- ( K e. Poset -> ( ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 42 |
41
|
imdistani |
|- ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) -> ( K e. Poset /\ ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 43 |
1 18 33
|
isclat |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) ) |
| 44 |
1 2 26
|
islat |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 45 |
42 43 44
|
3imtr4i |
|- ( K e. CLat -> K e. Lat ) |