Metamath Proof Explorer


Theorem meetdmss

Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetdmss.b
|- B = ( Base ` K )
meetdmss.j
|- ./\ = ( meet ` K )
meetdmss.k
|- ( ph -> K e. V )
Assertion meetdmss
|- ( ph -> dom ./\ C_ ( B X. B ) )

Proof

Step Hyp Ref Expression
1 meetdmss.b
 |-  B = ( Base ` K )
2 meetdmss.j
 |-  ./\ = ( meet ` K )
3 meetdmss.k
 |-  ( ph -> K e. V )
4 relopabv
 |-  Rel { <. x , y >. | { x , y } e. dom ( glb ` K ) }
5 eqid
 |-  ( glb ` K ) = ( glb ` K )
6 5 2 meetdm
 |-  ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom ( glb ` K ) } )
7 3 6 syl
 |-  ( ph -> dom ./\ = { <. x , y >. | { x , y } e. dom ( glb ` K ) } )
8 7 releqd
 |-  ( ph -> ( Rel dom ./\ <-> Rel { <. x , y >. | { x , y } e. dom ( glb ` K ) } ) )
9 4 8 mpbiri
 |-  ( ph -> Rel dom ./\ )
10 vex
 |-  x e. _V
11 10 a1i
 |-  ( ph -> x e. _V )
12 vex
 |-  y e. _V
13 12 a1i
 |-  ( ph -> y e. _V )
14 5 2 3 11 13 meetdef
 |-  ( ph -> ( <. x , y >. e. dom ./\ <-> { x , y } e. dom ( glb ` K ) ) )
15 eqid
 |-  ( le ` K ) = ( le ` K )
16 3 adantr
 |-  ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> K e. V )
17 simpr
 |-  ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> { x , y } e. dom ( glb ` K ) )
18 1 15 5 16 17 glbelss
 |-  ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> { x , y } C_ B )
19 18 ex
 |-  ( ph -> ( { x , y } e. dom ( glb ` K ) -> { x , y } C_ B ) )
20 10 12 prss
 |-  ( ( x e. B /\ y e. B ) <-> { x , y } C_ B )
21 opelxpi
 |-  ( ( x e. B /\ y e. B ) -> <. x , y >. e. ( B X. B ) )
22 20 21 sylbir
 |-  ( { x , y } C_ B -> <. x , y >. e. ( B X. B ) )
23 19 22 syl6
 |-  ( ph -> ( { x , y } e. dom ( glb ` K ) -> <. x , y >. e. ( B X. B ) ) )
24 14 23 sylbid
 |-  ( ph -> ( <. x , y >. e. dom ./\ -> <. x , y >. e. ( B X. B ) ) )
25 9 24 relssdv
 |-  ( ph -> dom ./\ C_ ( B X. B ) )