| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meetdmss.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
meetdmss.j |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
meetdmss.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 4 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) } |
| 5 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 6 |
5 2
|
meetdm |
⊢ ( 𝐾 ∈ 𝑉 → dom ∧ = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) } ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → dom ∧ = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) } ) |
| 8 |
7
|
releqd |
⊢ ( 𝜑 → ( Rel dom ∧ ↔ Rel { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) } ) ) |
| 9 |
4 8
|
mpbiri |
⊢ ( 𝜑 → Rel dom ∧ ) |
| 10 |
|
vex |
⊢ 𝑥 ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑥 ∈ V ) |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑦 ∈ V ) |
| 14 |
5 2 3 11 13
|
meetdef |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∧ ↔ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 15 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) → 𝐾 ∈ 𝑉 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 18 |
1 15 5 16 17
|
glbelss |
⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) ) |
| 20 |
10 12
|
prss |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 21 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 22 |
20 21
|
sylbir |
⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐵 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 23 |
19 22
|
syl6 |
⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) ) |
| 24 |
14 23
|
sylbid |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∧ → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) ) |
| 25 |
9 24
|
relssdv |
⊢ ( 𝜑 → dom ∧ ⊆ ( 𝐵 × 𝐵 ) ) |