Metamath Proof Explorer


Theorem meetdm

Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018)

Ref Expression
Hypotheses meetfval.u 𝐺 = ( glb ‘ 𝐾 )
meetfval.m = ( meet ‘ 𝐾 )
Assertion meetdm ( 𝐾𝑉 → dom = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } )

Proof

Step Hyp Ref Expression
1 meetfval.u 𝐺 = ( glb ‘ 𝐾 )
2 meetfval.m = ( meet ‘ 𝐾 )
3 1 2 meetfval2 ( 𝐾𝑉 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } )
4 3 dmeqd ( 𝐾𝑉 → dom = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } )
5 dmoprab dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) }
6 fvex ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ∈ V
7 6 isseti 𝑧 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } )
8 19.42v ( ∃ 𝑧 ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ∃ 𝑧 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) )
9 7 8 mpbiran2 ( ∃ 𝑧 ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ↔ { 𝑥 , 𝑦 } ∈ dom 𝐺 )
10 9 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 }
11 5 10 eqtri dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 }
12 4 11 eqtrdi ( 𝐾𝑉 → dom = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } )