Metamath Proof Explorer


Theorem meetfval2

Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses meetfval.u 𝐺 = ( glb ‘ 𝐾 )
meetfval.m = ( meet ‘ 𝐾 )
Assertion meetfval2 ( 𝐾𝑉 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } )

Proof

Step Hyp Ref Expression
1 meetfval.u 𝐺 = ( glb ‘ 𝐾 )
2 meetfval.m = ( meet ‘ 𝐾 )
3 1 2 meetfval ( 𝐾𝑉 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } )
4 1 glbfun Fun 𝐺
5 funbrfv2b ( Fun 𝐺 → ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) )
6 4 5 ax-mp ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) )
7 eqcom ( ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) )
8 7 anbi2i ( ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) )
9 6 8 bitri ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) )
10 9 oprabbii { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) }
11 3 10 eqtrdi ( 𝐾𝑉 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } )