| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meetfval.u |
|- G = ( glb ` K ) |
| 2 |
|
meetfval.m |
|- ./\ = ( meet ` K ) |
| 3 |
1 2
|
meetfval |
|- ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 4 |
1
|
glbfun |
|- Fun G |
| 5 |
|
funbrfv2b |
|- ( Fun G -> ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) |
| 7 |
|
eqcom |
|- ( ( G ` { x , y } ) = z <-> z = ( G ` { x , y } ) ) |
| 8 |
7
|
anbi2i |
|- ( ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) |
| 9 |
6 8
|
bitri |
|- ( { x , y } G z <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) |
| 10 |
9
|
oprabbii |
|- { <. <. x , y >. , z >. | { x , y } G z } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } |
| 11 |
3 10
|
eqtrdi |
|- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |