Metamath Proof Explorer


Theorem meetdm

Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018)

Ref Expression
Hypotheses meetfval.u G=glbK
meetfval.m ˙=meetK
Assertion meetdm KVdom˙=xy|xydomG

Proof

Step Hyp Ref Expression
1 meetfval.u G=glbK
2 meetfval.m ˙=meetK
3 1 2 meetfval2 KV˙=xyz|xydomGz=Gxy
4 3 dmeqd KVdom˙=domxyz|xydomGz=Gxy
5 dmoprab domxyz|xydomGz=Gxy=xy|zxydomGz=Gxy
6 fvex GxyV
7 6 isseti zz=Gxy
8 19.42v zxydomGz=GxyxydomGzz=Gxy
9 7 8 mpbiran2 zxydomGz=GxyxydomG
10 9 opabbii xy|zxydomGz=Gxy=xy|xydomG
11 5 10 eqtri domxyz|xydomGz=Gxy=xy|xydomG
12 4 11 eqtrdi KVdom˙=xy|xydomG