| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglblem.b |
|- B = ( Base ` K ) |
| 2 |
|
dihglblem.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihglblem.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dihglblem.g |
|- G = ( glb ` K ) |
| 5 |
|
dihglblem.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dihglblem.t |
|- T = { u e. B | E. v e. S u = ( v ./\ W ) } |
| 7 |
|
dihglblem.i |
|- J = ( ( DIsoB ` K ) ` W ) |
| 8 |
|
dihglblem.ih |
|- I = ( ( DIsoH ` K ) ` W ) |
| 9 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 10 |
9
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> K e. CLat ) |
| 11 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> S C_ B ) |
| 12 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> x e. S ) |
| 13 |
1 2 4
|
clatglble |
|- ( ( K e. CLat /\ S C_ B /\ x e. S ) -> ( G ` S ) .<_ x ) |
| 14 |
10 11 12 13
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> ( G ` S ) .<_ x ) |
| 15 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> ( K e. HL /\ W e. H ) ) |
| 16 |
1 4
|
clatglbcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
| 17 |
10 11 16
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> ( G ` S ) e. B ) |
| 18 |
11 12
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> x e. B ) |
| 19 |
1 2 5 8
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G ` S ) e. B /\ x e. B ) -> ( ( I ` ( G ` S ) ) C_ ( I ` x ) <-> ( G ` S ) .<_ x ) ) |
| 20 |
15 17 18 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> ( ( I ` ( G ` S ) ) C_ ( I ` x ) <-> ( G ` S ) .<_ x ) ) |
| 21 |
14 20
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ x e. S ) -> ( I ` ( G ` S ) ) C_ ( I ` x ) ) |
| 22 |
21
|
ralrimiva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> A. x e. S ( I ` ( G ` S ) ) C_ ( I ` x ) ) |
| 23 |
|
ssiin |
|- ( ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) <-> A. x e. S ( I ` ( G ` S ) ) C_ ( I ` x ) ) |
| 24 |
22 23
|
sylibr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> ( I ` ( G ` S ) ) C_ |^|_ x e. S ( I ` x ) ) |