Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglb.b | |- B = ( Base ` K ) |
|
| clatglb.l | |- .<_ = ( le ` K ) |
||
| clatglb.g | |- G = ( glb ` K ) |
||
| Assertion | clatglble | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglb.b | |- B = ( Base ` K ) |
|
| 2 | clatglb.l | |- .<_ = ( le ` K ) |
|
| 3 | clatglb.g | |- G = ( glb ` K ) |
|
| 4 | simp1 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> K e. CLat ) |
|
| 5 | 1 3 | clatglbcl2 | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
| 6 | 5 | 3adant3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> S e. dom G ) |
| 7 | simp3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> X e. S ) |
|
| 8 | 1 2 3 4 6 7 | glble | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X ) |