Metamath Proof Explorer


Theorem clatglble

Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses clatglb.b B=BaseK
clatglb.l ˙=K
clatglb.g G=glbK
Assertion clatglble KCLatSBXSGS˙X

Proof

Step Hyp Ref Expression
1 clatglb.b B=BaseK
2 clatglb.l ˙=K
3 clatglb.g G=glbK
4 simp1 KCLatSBXSKCLat
5 1 3 clatglbcl2 KCLatSBSdomG
6 5 3adant3 KCLatSBXSSdomG
7 simp3 KCLatSBXSXS
8 1 2 3 4 6 7 glble KCLatSBXSGS˙X