Metamath Proof Explorer


Theorem glble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b B=BaseK
glbprop.l ˙=K
glbprop.u U=glbK
glbprop.k φKV
glbprop.s φSdomU
glble.x φXS
Assertion glble φUS˙X

Proof

Step Hyp Ref Expression
1 glbprop.b B=BaseK
2 glbprop.l ˙=K
3 glbprop.u U=glbK
4 glbprop.k φKV
5 glbprop.s φSdomU
6 glble.x φXS
7 breq2 y=XUS˙yUS˙X
8 1 2 3 4 5 glbprop φySUS˙yzBySz˙yz˙US
9 8 simpld φySUS˙y
10 7 9 6 rspcdva φUS˙X