Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glbprop.b | |- B = ( Base ` K ) |
|
| glbprop.l | |- .<_ = ( le ` K ) |
||
| glbprop.u | |- U = ( glb ` K ) |
||
| glbprop.k | |- ( ph -> K e. V ) |
||
| glbprop.s | |- ( ph -> S e. dom U ) |
||
| glble.x | |- ( ph -> X e. S ) |
||
| Assertion | glble | |- ( ph -> ( U ` S ) .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbprop.b | |- B = ( Base ` K ) |
|
| 2 | glbprop.l | |- .<_ = ( le ` K ) |
|
| 3 | glbprop.u | |- U = ( glb ` K ) |
|
| 4 | glbprop.k | |- ( ph -> K e. V ) |
|
| 5 | glbprop.s | |- ( ph -> S e. dom U ) |
|
| 6 | glble.x | |- ( ph -> X e. S ) |
|
| 7 | breq2 | |- ( y = X -> ( ( U ` S ) .<_ y <-> ( U ` S ) .<_ X ) ) |
|
| 8 | 1 2 3 4 5 | glbprop | |- ( ph -> ( A. y e. S ( U ` S ) .<_ y /\ A. z e. B ( A. y e. S z .<_ y -> z .<_ ( U ` S ) ) ) ) |
| 9 | 8 | simpld | |- ( ph -> A. y e. S ( U ` S ) .<_ y ) |
| 10 | 7 9 6 | rspcdva | |- ( ph -> ( U ` S ) .<_ X ) |