Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihglblem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihglblem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dihglblem.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
5 |
|
dihglblem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dihglblem.t |
⊢ 𝑇 = { 𝑢 ∈ 𝐵 ∣ ∃ 𝑣 ∈ 𝑆 𝑢 = ( 𝑣 ∧ 𝑊 ) } |
7 |
|
dihglblem.i |
⊢ 𝐽 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihglblem.ih |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
11 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
13 |
1 2 4
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑥 ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑥 ) |
15 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
1 4
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
17 |
10 11 16
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
18 |
11 12
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
19 |
1 2 5 8
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑆 ) ≤ 𝑥 ) ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑆 ) ≤ 𝑥 ) ) |
21 |
14 20
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ( 𝐼 ‘ 𝑥 ) ) |
22 |
21
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ( 𝐼 ‘ 𝑥 ) ) |
23 |
|
ssiin |
⊢ ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ∩ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ( 𝐼 ‘ 𝑥 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑆 ) ) ⊆ ∩ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ) |