Metamath Proof Explorer


Theorem dihglblem4

Description: Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014)

Ref Expression
Hypotheses dihglblem.b 𝐵 = ( Base ‘ 𝐾 )
dihglblem.l = ( le ‘ 𝐾 )
dihglblem.m = ( meet ‘ 𝐾 )
dihglblem.g 𝐺 = ( glb ‘ 𝐾 )
dihglblem.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglblem.t 𝑇 = { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) }
dihglblem.i 𝐽 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihglblem.ih 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihglblem4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ 𝑥𝑆 ( 𝐼𝑥 ) )

Proof

Step Hyp Ref Expression
1 dihglblem.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglblem.l = ( le ‘ 𝐾 )
3 dihglblem.m = ( meet ‘ 𝐾 )
4 dihglblem.g 𝐺 = ( glb ‘ 𝐾 )
5 dihglblem.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dihglblem.t 𝑇 = { 𝑢𝐵 ∣ ∃ 𝑣𝑆 𝑢 = ( 𝑣 𝑊 ) }
7 dihglblem.i 𝐽 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihglblem.ih 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
9 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
10 9 ad3antrrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → 𝐾 ∈ CLat )
11 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → 𝑆𝐵 )
12 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → 𝑥𝑆 )
13 1 2 4 clatglble ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝑆 ) → ( 𝐺𝑆 ) 𝑥 )
14 10 11 12 13 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → ( 𝐺𝑆 ) 𝑥 )
15 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 1 4 clatglbcl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( 𝐺𝑆 ) ∈ 𝐵 )
17 10 11 16 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → ( 𝐺𝑆 ) ∈ 𝐵 )
18 11 12 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → 𝑥𝐵 )
19 1 2 5 8 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺𝑆 ) ∈ 𝐵𝑥𝐵 ) → ( ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ ( 𝐼𝑥 ) ↔ ( 𝐺𝑆 ) 𝑥 ) )
20 15 17 18 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → ( ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ ( 𝐼𝑥 ) ↔ ( 𝐺𝑆 ) 𝑥 ) )
21 14 20 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) ∧ 𝑥𝑆 ) → ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ ( 𝐼𝑥 ) )
22 21 ralrimiva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → ∀ 𝑥𝑆 ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ ( 𝐼𝑥 ) )
23 ssiin ( ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ 𝑥𝑆 ( 𝐼𝑥 ) ↔ ∀ 𝑥𝑆 ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ ( 𝐼𝑥 ) )
24 22 23 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐵𝑆 ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺𝑆 ) ) ⊆ 𝑥𝑆 ( 𝐼𝑥 ) )