| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglblem5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihglblem5.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 3 |
|
dihglblem5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihglblem5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihglblem5.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dihglblem5.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 7 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑥 ) ∈ V |
| 8 |
7
|
dfiin2 |
⊢ ∩ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } |
| 9 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
3 4 9
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → 𝑈 ∈ LMod ) |
| 11 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑇 ⊆ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
| 14 |
12 13
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝐵 ) |
| 15 |
1 3 5 4 6
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 16 |
11 14 15
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 17 |
16
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 18 |
|
uniiunlem |
⊢ ( ∀ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ⊆ 𝑆 ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ( ∀ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ⊆ 𝑆 ) ) |
| 20 |
17 19
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ⊆ 𝑆 ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → 𝑇 ≠ ∅ ) |
| 22 |
|
n0 |
⊢ ( 𝑇 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑇 ) |
| 23 |
21 22
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ∃ 𝑥 𝑥 ∈ 𝑇 ) |
| 24 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) |
| 25 |
24
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 27 |
25 26
|
nfne |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ≠ ∅ |
| 28 |
7
|
elabrex |
⊢ ( 𝑥 ∈ 𝑇 → ( 𝐼 ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ) |
| 29 |
28
|
ne0d |
⊢ ( 𝑥 ∈ 𝑇 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) |
| 30 |
27 29
|
exlimi |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝑇 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) |
| 31 |
23 30
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) |
| 32 |
6
|
lssintcl |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ⊆ 𝑆 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ∈ 𝑆 ) |
| 33 |
10 20 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑇 𝑦 = ( 𝐼 ‘ 𝑥 ) } ∈ 𝑆 ) |
| 34 |
8 33
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑇 ≠ ∅ ) ) → ∩ 𝑥 ∈ 𝑇 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |