Metamath Proof Explorer


Theorem dihglblem5

Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014)

Ref Expression
Hypotheses dihglblem5.b 𝐵 = ( Base ‘ 𝐾 )
dihglblem5.g 𝐺 = ( glb ‘ 𝐾 )
dihglblem5.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglblem5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5.s 𝑆 = ( LSubSp ‘ 𝑈 )
Assertion dihglblem5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 dihglblem5.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglblem5.g 𝐺 = ( glb ‘ 𝐾 )
3 dihglblem5.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihglblem5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dihglblem5.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 dihglblem5.s 𝑆 = ( LSubSp ‘ 𝑈 )
7 fvex ( 𝐼𝑥 ) ∈ V
8 7 dfiin2 𝑥𝑇 ( 𝐼𝑥 ) = { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) }
9 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 3 4 9 dvhlmod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → 𝑈 ∈ LMod )
11 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) ∧ 𝑥𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) ∧ 𝑥𝑇 ) → 𝑇𝐵 )
13 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) ∧ 𝑥𝑇 ) → 𝑥𝑇 )
14 12 13 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) ∧ 𝑥𝑇 ) → 𝑥𝐵 )
15 1 3 5 4 6 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥𝐵 ) → ( 𝐼𝑥 ) ∈ 𝑆 )
16 11 14 15 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) ∧ 𝑥𝑇 ) → ( 𝐼𝑥 ) ∈ 𝑆 )
17 16 ralrimiva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → ∀ 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 )
18 uniiunlem ( ∀ 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 → ( ∀ 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ⊆ 𝑆 ) )
19 17 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → ( ∀ 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 ↔ { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ⊆ 𝑆 ) )
20 17 19 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ⊆ 𝑆 )
21 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → 𝑇 ≠ ∅ )
22 n0 ( 𝑇 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑇 )
23 21 22 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → ∃ 𝑥 𝑥𝑇 )
24 nfre1 𝑥𝑥𝑇 𝑦 = ( 𝐼𝑥 )
25 24 nfab 𝑥 { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) }
26 nfcv 𝑥
27 25 26 nfne 𝑥 { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ≠ ∅
28 7 elabrex ( 𝑥𝑇 → ( 𝐼𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } )
29 28 ne0d ( 𝑥𝑇 → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ≠ ∅ )
30 27 29 exlimi ( ∃ 𝑥 𝑥𝑇 → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ≠ ∅ )
31 23 30 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ≠ ∅ )
32 6 lssintcl ( ( 𝑈 ∈ LMod ∧ { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ⊆ 𝑆 ∧ { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ≠ ∅ ) → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ∈ 𝑆 )
33 10 20 31 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → { 𝑦 ∣ ∃ 𝑥𝑇 𝑦 = ( 𝐼𝑥 ) } ∈ 𝑆 )
34 8 33 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐵𝑇 ≠ ∅ ) ) → 𝑥𝑇 ( 𝐼𝑥 ) ∈ 𝑆 )