| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
dihmeetlem2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihmeetlem2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihmeetlem2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 6 |
|
dihmeetlem2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 7 |
|
dihmeetlem2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 8 |
|
dihmeetlem2.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dihmeetlem2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
dihmeetlem2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
dihmeetlem2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
|
dihmeetlem2.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑞 ) |
| 13 |
|
dihmeetlem2.o |
⊢ 0 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 14 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 15 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 16 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
| 17 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
| 18 |
14 2 15 16 17
|
meetval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) ) |
| 20 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 21 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 22 |
1 5 3 21
|
dibeldmN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
| 23 |
22
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
23
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 25 |
1 5 3 21
|
dibeldmN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
| 26 |
25
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 27 |
26
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 28 |
|
prssg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 29 |
16 17 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 30 |
24 27 29
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 31 |
|
prnzg |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 , 𝑌 } ≠ ∅ ) |
| 32 |
16 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → { 𝑋 , 𝑌 } ≠ ∅ ) |
| 33 |
14 3 21
|
dibglbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 34 |
20 30 32 33
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 35 |
19 34
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 36 |
15
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 37 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 38 |
36 16 17 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 39 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 40 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
| 42 |
1 5 2
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 43 |
36 16 17 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 44 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ≤ 𝑊 ) |
| 45 |
1 5 36 38 16 41 43 44
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
| 46 |
1 5 3 4 21
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
| 47 |
20 38 45 46
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
| 48 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 49 |
|
vex |
⊢ 𝑥 ∈ V |
| 50 |
49
|
elpr |
⊢ ( 𝑥 ∈ { 𝑋 , 𝑌 } ↔ ( 𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ) ) |
| 51 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
| 52 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
| 53 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
| 54 |
52 53
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
| 56 |
51 55
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
| 57 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) |
| 58 |
|
eleq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵 ) ) |
| 59 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ≤ 𝑊 ↔ 𝑌 ≤ 𝑊 ) ) |
| 60 |
58 59
|
anbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
| 62 |
57 61
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
| 63 |
56 62
|
jaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
| 64 |
50 63
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
| 65 |
1 5 3 4 21
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 66 |
48 64 65
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝐼 ‘ 𝑥 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 67 |
66
|
iineq2dv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 68 |
35 47 67
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑋 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑌 ) ) |
| 71 |
69 70
|
iinxprg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
| 72 |
16 17 71
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
| 73 |
68 72
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |