Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetlem2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
dihmeetlem2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihmeetlem2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihmeetlem2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
|
dihmeetlem2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
dihmeetlem2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
8 |
|
dihmeetlem2.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihmeetlem2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihmeetlem2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihmeetlem2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihmeetlem2.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑞 ) |
13 |
|
dihmeetlem2.o |
⊢ 0 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
14 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
15 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
16 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
17 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
18 |
14 2 15 16 17
|
meetval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) ) |
20 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
22 |
1 5 3 21
|
dibeldmN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
23 |
22
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
25 |
1 5 3 21
|
dibeldmN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
26 |
25
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
27 |
26
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
|
prssg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
29 |
16 17 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝑋 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑌 ∈ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
30 |
24 27 29
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
31 |
|
prnzg |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 , 𝑌 } ≠ ∅ ) |
32 |
16 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → { 𝑋 , 𝑌 } ≠ ∅ ) |
33 |
14 3 21
|
dibglbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( { 𝑋 , 𝑌 } ⊆ dom ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
34 |
20 30 32 33
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
35 |
19 34
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
36 |
15
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
37 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
38 |
36 16 17 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
39 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
40 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
41 |
39 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
42 |
1 5 2
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
43 |
36 16 17 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
44 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ≤ 𝑊 ) |
45 |
1 5 36 38 16 41 43 44
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
46 |
1 5 3 4 21
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
47 |
20 38 45 46
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
48 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
49 |
|
vex |
⊢ 𝑥 ∈ V |
50 |
49
|
elpr |
⊢ ( 𝑥 ∈ { 𝑋 , 𝑌 } ↔ ( 𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ) ) |
51 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
52 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
53 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
54 |
52 53
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
55 |
54
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) |
56 |
51 55
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
57 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) |
58 |
|
eleq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵 ) ) |
59 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ≤ 𝑊 ↔ 𝑌 ≤ 𝑊 ) ) |
60 |
58 59
|
anbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ) |
62 |
57 61
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑌 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
63 |
56 62
|
jaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
64 |
50 63
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) |
65 |
1 5 3 4 21
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
66 |
48 64 65
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑥 ∈ { 𝑋 , 𝑌 } ) → ( 𝐼 ‘ 𝑥 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
67 |
66
|
iineq2dv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
68 |
35 47 67
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑋 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑌 ) ) |
71 |
69 70
|
iinxprg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
72 |
16 17 71
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
73 |
68 72
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |