| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem2.b |
|
| 2 |
|
dihmeetlem2.m |
|
| 3 |
|
dihmeetlem2.h |
|
| 4 |
|
dihmeetlem2.i |
|
| 5 |
|
dihmeetlem2.l |
|
| 6 |
|
dihmeetlem2.j |
|
| 7 |
|
dihmeetlem2.a |
|
| 8 |
|
dihmeetlem2.p |
|
| 9 |
|
dihmeetlem2.t |
|
| 10 |
|
dihmeetlem2.r |
|
| 11 |
|
dihmeetlem2.e |
|
| 12 |
|
dihmeetlem2.g |
|
| 13 |
|
dihmeetlem2.o |
|
| 14 |
|
eqid |
|
| 15 |
|
simp1l |
|
| 16 |
|
simp2l |
|
| 17 |
|
simp3l |
|
| 18 |
14 2 15 16 17
|
meetval |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
simp1 |
|
| 21 |
|
eqid |
|
| 22 |
1 5 3 21
|
dibeldmN |
|
| 23 |
22
|
biimpar |
|
| 24 |
23
|
3adant3 |
|
| 25 |
1 5 3 21
|
dibeldmN |
|
| 26 |
25
|
biimpar |
|
| 27 |
26
|
3adant2 |
|
| 28 |
|
prssg |
|
| 29 |
16 17 28
|
syl2anc |
|
| 30 |
24 27 29
|
mpbi2and |
|
| 31 |
|
prnzg |
|
| 32 |
16 31
|
syl |
|
| 33 |
14 3 21
|
dibglbN |
|
| 34 |
20 30 32 33
|
syl12anc |
|
| 35 |
19 34
|
eqtrd |
|
| 36 |
15
|
hllatd |
|
| 37 |
1 2
|
latmcl |
|
| 38 |
36 16 17 37
|
syl3anc |
|
| 39 |
|
simp1r |
|
| 40 |
1 3
|
lhpbase |
|
| 41 |
39 40
|
syl |
|
| 42 |
1 5 2
|
latmle1 |
|
| 43 |
36 16 17 42
|
syl3anc |
|
| 44 |
|
simp2r |
|
| 45 |
1 5 36 38 16 41 43 44
|
lattrd |
|
| 46 |
1 5 3 4 21
|
dihvalb |
|
| 47 |
20 38 45 46
|
syl12anc |
|
| 48 |
|
simpl1 |
|
| 49 |
|
vex |
|
| 50 |
49
|
elpr |
|
| 51 |
|
simpl2 |
|
| 52 |
|
eleq1 |
|
| 53 |
|
breq1 |
|
| 54 |
52 53
|
anbi12d |
|
| 55 |
54
|
adantl |
|
| 56 |
51 55
|
mpbird |
|
| 57 |
|
simpl3 |
|
| 58 |
|
eleq1 |
|
| 59 |
|
breq1 |
|
| 60 |
58 59
|
anbi12d |
|
| 61 |
60
|
adantl |
|
| 62 |
57 61
|
mpbird |
|
| 63 |
56 62
|
jaodan |
|
| 64 |
50 63
|
sylan2b |
|
| 65 |
1 5 3 4 21
|
dihvalb |
|
| 66 |
48 64 65
|
syl2anc |
|
| 67 |
66
|
iineq2dv |
|
| 68 |
35 47 67
|
3eqtr4d |
|
| 69 |
|
fveq2 |
|
| 70 |
|
fveq2 |
|
| 71 |
69 70
|
iinxprg |
|
| 72 |
16 17 71
|
syl2anc |
|
| 73 |
68 72
|
eqtrd |
|