Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem2.b |
|
2 |
|
dihmeetlem2.m |
|
3 |
|
dihmeetlem2.h |
|
4 |
|
dihmeetlem2.i |
|
5 |
|
dihmeetlem2.l |
|
6 |
|
dihmeetlem2.j |
|
7 |
|
dihmeetlem2.a |
|
8 |
|
dihmeetlem2.p |
|
9 |
|
dihmeetlem2.t |
|
10 |
|
dihmeetlem2.r |
|
11 |
|
dihmeetlem2.e |
|
12 |
|
dihmeetlem2.g |
|
13 |
|
dihmeetlem2.o |
|
14 |
|
eqid |
|
15 |
|
simp1l |
|
16 |
|
simp2l |
|
17 |
|
simp3l |
|
18 |
14 2 15 16 17
|
meetval |
|
19 |
18
|
fveq2d |
|
20 |
|
simp1 |
|
21 |
|
eqid |
|
22 |
1 5 3 21
|
dibeldmN |
|
23 |
22
|
biimpar |
|
24 |
23
|
3adant3 |
|
25 |
1 5 3 21
|
dibeldmN |
|
26 |
25
|
biimpar |
|
27 |
26
|
3adant2 |
|
28 |
|
prssg |
|
29 |
16 17 28
|
syl2anc |
|
30 |
24 27 29
|
mpbi2and |
|
31 |
|
prnzg |
|
32 |
16 31
|
syl |
|
33 |
14 3 21
|
dibglbN |
|
34 |
20 30 32 33
|
syl12anc |
|
35 |
19 34
|
eqtrd |
|
36 |
15
|
hllatd |
|
37 |
1 2
|
latmcl |
|
38 |
36 16 17 37
|
syl3anc |
|
39 |
|
simp1r |
|
40 |
1 3
|
lhpbase |
|
41 |
39 40
|
syl |
|
42 |
1 5 2
|
latmle1 |
|
43 |
36 16 17 42
|
syl3anc |
|
44 |
|
simp2r |
|
45 |
1 5 36 38 16 41 43 44
|
lattrd |
|
46 |
1 5 3 4 21
|
dihvalb |
|
47 |
20 38 45 46
|
syl12anc |
|
48 |
|
simpl1 |
|
49 |
|
vex |
|
50 |
49
|
elpr |
|
51 |
|
simpl2 |
|
52 |
|
eleq1 |
|
53 |
|
breq1 |
|
54 |
52 53
|
anbi12d |
|
55 |
54
|
adantl |
|
56 |
51 55
|
mpbird |
|
57 |
|
simpl3 |
|
58 |
|
eleq1 |
|
59 |
|
breq1 |
|
60 |
58 59
|
anbi12d |
|
61 |
60
|
adantl |
|
62 |
57 61
|
mpbird |
|
63 |
56 62
|
jaodan |
|
64 |
50 63
|
sylan2b |
|
65 |
1 5 3 4 21
|
dihvalb |
|
66 |
48 64 65
|
syl2anc |
|
67 |
66
|
iineq2dv |
|
68 |
35 47 67
|
3eqtr4d |
|
69 |
|
fveq2 |
|
70 |
|
fveq2 |
|
71 |
69 70
|
iinxprg |
|
72 |
16 17 71
|
syl2anc |
|
73 |
68 72
|
eqtrd |
|