| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibglb.g |
|
| 2 |
|
dibglb.h |
|
| 3 |
|
dibglb.i |
|
| 4 |
|
simpl |
|
| 5 |
|
simprl |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7 2 3
|
dibdmN |
|
| 9 |
8
|
sseq2d |
|
| 10 |
9
|
adantr |
|
| 11 |
5 10
|
mpbid |
|
| 12 |
|
simprr |
|
| 13 |
2 3
|
dibvalrel |
|
| 14 |
13
|
adantr |
|
| 15 |
|
n0 |
|
| 16 |
15
|
biimpi |
|
| 17 |
16
|
ad2antll |
|
| 18 |
2 3
|
dibvalrel |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
a1d |
|
| 21 |
20
|
ancld |
|
| 22 |
21
|
eximdv |
|
| 23 |
17 22
|
mpd |
|
| 24 |
|
df-rex |
|
| 25 |
23 24
|
sylibr |
|
| 26 |
|
reliin |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
id |
|
| 29 |
|
simpl |
|
| 30 |
|
simprl |
|
| 31 |
|
eqid |
|
| 32 |
6 7 2 31
|
diadm |
|
| 33 |
32
|
adantr |
|
| 34 |
30 33
|
sseqtrrd |
|
| 35 |
|
simprr |
|
| 36 |
1 2 31
|
diaglbN |
|
| 37 |
29 34 35 36
|
syl12anc |
|
| 38 |
37
|
eleq2d |
|
| 39 |
|
vex |
|
| 40 |
|
eliin |
|
| 41 |
39 40
|
ax-mp |
|
| 42 |
38 41
|
bitrdi |
|
| 43 |
42
|
anbi1d |
|
| 44 |
|
r19.27zv |
|
| 45 |
44
|
ad2antll |
|
| 46 |
43 45
|
bitr4d |
|
| 47 |
|
hlclat |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
|
ssrab2 |
|
| 50 |
30 49
|
sstrdi |
|
| 51 |
6 1
|
clatglbcl |
|
| 52 |
48 50 51
|
syl2anc |
|
| 53 |
|
hllat |
|
| 54 |
53
|
ad3antrrr |
|
| 55 |
47
|
ad3antrrr |
|
| 56 |
|
simplrl |
|
| 57 |
56 49
|
sstrdi |
|
| 58 |
55 57 51
|
syl2anc |
|
| 59 |
50
|
sselda |
|
| 60 |
6 2
|
lhpbase |
|
| 61 |
60
|
ad3antlr |
|
| 62 |
|
simpr |
|
| 63 |
6 7 1
|
clatglble |
|
| 64 |
55 57 62 63
|
syl3anc |
|
| 65 |
30
|
sselda |
|
| 66 |
|
breq1 |
|
| 67 |
66
|
elrab |
|
| 68 |
65 67
|
sylib |
|
| 69 |
68
|
simprd |
|
| 70 |
6 7 54 58 59 61 64 69
|
lattrd |
|
| 71 |
17 70
|
exlimddv |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
6 7 2 72 73 31 3
|
dibopelval2 |
|
| 75 |
29 52 71 74
|
syl12anc |
|
| 76 |
|
opex |
|
| 77 |
|
eliin |
|
| 78 |
76 77
|
ax-mp |
|
| 79 |
|
simpll |
|
| 80 |
6 7 2 72 73 31 3
|
dibopelval2 |
|
| 81 |
79 68 80
|
syl2anc |
|
| 82 |
81
|
ralbidva |
|
| 83 |
78 82
|
bitrid |
|
| 84 |
46 75 83
|
3bitr4d |
|
| 85 |
84
|
eqrelrdv2 |
|
| 86 |
14 27 28 85
|
syl21anc |
|
| 87 |
4 11 12 86
|
syl12anc |
|