| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diaglb.g |
|
| 2 |
|
diaglb.h |
|
| 3 |
|
diaglb.i |
|
| 4 |
|
simpl |
|
| 5 |
|
hlclat |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
7 8 2 3
|
diadm |
|
| 10 |
9
|
sseq2d |
|
| 11 |
10
|
biimpa |
|
| 12 |
11
|
adantrr |
|
| 13 |
|
ssrab2 |
|
| 14 |
12 13
|
sstrdi |
|
| 15 |
7 1
|
clatglbcl |
|
| 16 |
6 14 15
|
syl2anc |
|
| 17 |
|
simprr |
|
| 18 |
|
n0 |
|
| 19 |
17 18
|
sylib |
|
| 20 |
|
hllat |
|
| 21 |
20
|
ad3antrrr |
|
| 22 |
16
|
adantr |
|
| 23 |
|
ssel2 |
|
| 24 |
23
|
adantlr |
|
| 25 |
24
|
adantll |
|
| 26 |
7 8 2 3
|
diaeldm |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
25 27
|
mpbid |
|
| 29 |
28
|
simpld |
|
| 30 |
7 2
|
lhpbase |
|
| 31 |
30
|
ad3antlr |
|
| 32 |
5
|
ad3antrrr |
|
| 33 |
14
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
7 8 1
|
clatglble |
|
| 36 |
32 33 34 35
|
syl3anc |
|
| 37 |
28
|
simprd |
|
| 38 |
7 8 21 22 29 31 36 37
|
lattrd |
|
| 39 |
19 38
|
exlimddv |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
7 8 2 40 41 3
|
diaelval |
|
| 43 |
4 16 39 42
|
syl12anc |
|
| 44 |
|
r19.28zv |
|
| 45 |
44
|
ad2antll |
|
| 46 |
|
simpll |
|
| 47 |
7 8 2 40 41 3
|
diaelval |
|
| 48 |
46 28 47
|
syl2anc |
|
| 49 |
48
|
ralbidva |
|
| 50 |
5
|
ad3antrrr |
|
| 51 |
7 2 40 41
|
trlcl |
|
| 52 |
51
|
adantlr |
|
| 53 |
14
|
adantr |
|
| 54 |
7 8 1
|
clatleglb |
|
| 55 |
50 52 53 54
|
syl3anc |
|
| 56 |
55
|
pm5.32da |
|
| 57 |
45 49 56
|
3bitr4rd |
|
| 58 |
|
vex |
|
| 59 |
|
eliin |
|
| 60 |
58 59
|
ax-mp |
|
| 61 |
57 60
|
bitr4di |
|
| 62 |
43 61
|
bitrd |
|
| 63 |
62
|
eqrdv |
|