Metamath Proof Explorer


Theorem iinxprg

Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses iinxprg.1 x = A C = D
iinxprg.2 x = B C = E
Assertion iinxprg A V B W x A B C = D E

Proof

Step Hyp Ref Expression
1 iinxprg.1 x = A C = D
2 iinxprg.2 x = B C = E
3 1 eleq2d x = A y C y D
4 2 eleq2d x = B y C y E
5 3 4 ralprg A V B W x A B y C y D y E
6 5 abbidv A V B W y | x A B y C = y | y D y E
7 df-iin x A B C = y | x A B y C
8 df-in D E = y | y D y E
9 6 7 8 3eqtr4g A V B W x A B C = D E