Metamath Proof Explorer


Theorem iunxsng

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016)

Ref Expression
Hypothesis iunxsng.1 x = A B = C
Assertion iunxsng A V x A B = C

Proof

Step Hyp Ref Expression
1 iunxsng.1 x = A B = C
2 eliun y x A B x A y B
3 1 eleq2d x = A y B y C
4 3 rexsng A V x A y B y C
5 2 4 bitrid A V y x A B y C
6 5 eqrdv A V x A B = C