Step |
Hyp |
Ref |
Expression |
1 |
|
lssintcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
3 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
4 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
5 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
6 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
7 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
8 |
|
intssuni2 |
⊢ ( ( 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ∪ 𝑆 ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ∪ 𝑆 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
11 |
10 1
|
lssss |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ⊆ ( Base ‘ 𝑊 ) ) |
12 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ( Base ‘ 𝑊 ) ↔ 𝑦 ⊆ ( Base ‘ 𝑊 ) ) |
13 |
11 12
|
sylibr |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
14 |
13
|
ssriv |
⊢ 𝑆 ⊆ 𝒫 ( Base ‘ 𝑊 ) |
15 |
|
sspwuni |
⊢ ( 𝑆 ⊆ 𝒫 ( Base ‘ 𝑊 ) ↔ ∪ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
16 |
14 15
|
mpbi |
⊢ ∪ 𝑆 ⊆ ( Base ‘ 𝑊 ) |
17 |
9 16
|
sstrdi |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
18 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑊 ∈ LMod ) |
19 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝑆 ) |
20 |
19
|
sselda |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝑆 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
22 |
21 1
|
lss0cl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) ∈ 𝑦 ) |
23 |
18 20 22
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ 𝐴 ) → ( 0g ‘ 𝑊 ) ∈ 𝑦 ) |
24 |
23
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∀ 𝑦 ∈ 𝐴 ( 0g ‘ 𝑊 ) ∈ 𝑦 ) |
25 |
|
fvex |
⊢ ( 0g ‘ 𝑊 ) ∈ V |
26 |
25
|
elint2 |
⊢ ( ( 0g ‘ 𝑊 ) ∈ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 ( 0g ‘ 𝑊 ) ∈ 𝑦 ) |
27 |
24 26
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ( 0g ‘ 𝑊 ) ∈ ∩ 𝐴 ) |
28 |
27
|
ne0d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ≠ ∅ ) |
29 |
20
|
adantlr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝑆 ) |
30 |
|
simplr1 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
31 |
|
simplr2 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑎 ∈ ∩ 𝐴 ) |
32 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
33 |
|
elinti |
⊢ ( 𝑎 ∈ ∩ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑎 ∈ 𝑦 ) ) |
34 |
31 32 33
|
sylc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑎 ∈ 𝑦 ) |
35 |
|
simplr3 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑏 ∈ ∩ 𝐴 ) |
36 |
|
elinti |
⊢ ( 𝑏 ∈ ∩ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑏 ∈ 𝑦 ) ) |
37 |
35 32 36
|
sylc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑏 ∈ 𝑦 ) |
38 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
39 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
40 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
41 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
42 |
38 39 40 41 1
|
lsscl |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑦 ∧ 𝑏 ∈ 𝑦 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑦 ) |
43 |
29 30 34 37 42
|
syl13anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑦 ) |
44 |
43
|
ralrimiva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑦 ) |
45 |
|
ovex |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ V |
46 |
45
|
elint2 |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑦 ) |
47 |
44 46
|
sylibr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ ∩ 𝐴 ) |
48 |
2 3 4 5 6 7 17 28 47
|
islssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝑆 ) |