Step |
Hyp |
Ref |
Expression |
1 |
|
lssintcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
intprg |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } = ( 𝑇 ∩ 𝑈 ) ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } = ( 𝑇 ∩ 𝑈 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
5 |
|
prssi |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ⊆ 𝑆 ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ⊆ 𝑆 ) |
7 |
|
prnzg |
⊢ ( 𝑇 ∈ 𝑆 → { 𝑇 , 𝑈 } ≠ ∅ ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → { 𝑇 , 𝑈 } ≠ ∅ ) |
9 |
1
|
lssintcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑇 , 𝑈 } ⊆ 𝑆 ∧ { 𝑇 , 𝑈 } ≠ ∅ ) → ∩ { 𝑇 , 𝑈 } ∈ 𝑆 ) |
10 |
4 6 8 9
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑇 , 𝑈 } ∈ 𝑆 ) |
11 |
3 10
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝑆 ) |