Metamath Proof Explorer


Theorem lssincl

Description: The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lssintcl.s S=LSubSpW
Assertion lssincl WLModTSUSTUS

Proof

Step Hyp Ref Expression
1 lssintcl.s S=LSubSpW
2 intprg TSUSTU=TU
3 2 3adant1 WLModTSUSTU=TU
4 simp1 WLModTSUSWLMod
5 prssi TSUSTUS
6 5 3adant1 WLModTSUSTUS
7 prnzg TSTU
8 7 3ad2ant2 WLModTSUSTU
9 1 lssintcl WLModTUSTUTUS
10 4 6 8 9 syl3anc WLModTSUSTUS
11 3 10 eqeltrrd WLModTSUSTUS