Metamath Proof Explorer


Theorem lssincl

Description: The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lssintcl.s S = LSubSp W
Assertion lssincl W LMod T S U S T U S

Proof

Step Hyp Ref Expression
1 lssintcl.s S = LSubSp W
2 intprg T S U S T U = T U
3 2 3adant1 W LMod T S U S T U = T U
4 simp1 W LMod T S U S W LMod
5 prssi T S U S T U S
6 5 3adant1 W LMod T S U S T U S
7 prnzg T S T U
8 7 3ad2ant2 W LMod T S U S T U
9 1 lssintcl W LMod T U S T U T U S
10 4 6 8 9 syl3anc W LMod T S U S T U S
11 3 10 eqeltrrd W LMod T S U S T U S