Step |
Hyp |
Ref |
Expression |
1 |
|
lssintcl.s |
|- S = ( LSubSp ` W ) |
2 |
|
eqidd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Scalar ` W ) = ( Scalar ` W ) ) |
3 |
|
eqidd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
4 |
|
eqidd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` W ) = ( Base ` W ) ) |
5 |
|
eqidd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( +g ` W ) = ( +g ` W ) ) |
6 |
|
eqidd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( .s ` W ) = ( .s ` W ) ) |
7 |
1
|
a1i |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> S = ( LSubSp ` W ) ) |
8 |
|
intssuni2 |
|- ( ( A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) |
9 |
8
|
3adant1 |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) |
10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
11 |
10 1
|
lssss |
|- ( y e. S -> y C_ ( Base ` W ) ) |
12 |
|
velpw |
|- ( y e. ~P ( Base ` W ) <-> y C_ ( Base ` W ) ) |
13 |
11 12
|
sylibr |
|- ( y e. S -> y e. ~P ( Base ` W ) ) |
14 |
13
|
ssriv |
|- S C_ ~P ( Base ` W ) |
15 |
|
sspwuni |
|- ( S C_ ~P ( Base ` W ) <-> U. S C_ ( Base ` W ) ) |
16 |
14 15
|
mpbi |
|- U. S C_ ( Base ` W ) |
17 |
9 16
|
sstrdi |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ ( Base ` W ) ) |
18 |
|
simpl1 |
|- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> W e. LMod ) |
19 |
|
simp2 |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A C_ S ) |
20 |
19
|
sselda |
|- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> y e. S ) |
21 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
22 |
21 1
|
lss0cl |
|- ( ( W e. LMod /\ y e. S ) -> ( 0g ` W ) e. y ) |
23 |
18 20 22
|
syl2anc |
|- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> ( 0g ` W ) e. y ) |
24 |
23
|
ralrimiva |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A. y e. A ( 0g ` W ) e. y ) |
25 |
|
fvex |
|- ( 0g ` W ) e. _V |
26 |
25
|
elint2 |
|- ( ( 0g ` W ) e. |^| A <-> A. y e. A ( 0g ` W ) e. y ) |
27 |
24 26
|
sylibr |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( 0g ` W ) e. |^| A ) |
28 |
27
|
ne0d |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A =/= (/) ) |
29 |
20
|
adantlr |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. S ) |
30 |
|
simplr1 |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
31 |
|
simplr2 |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. |^| A ) |
32 |
|
simpr |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. A ) |
33 |
|
elinti |
|- ( a e. |^| A -> ( y e. A -> a e. y ) ) |
34 |
31 32 33
|
sylc |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. y ) |
35 |
|
simplr3 |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. |^| A ) |
36 |
|
elinti |
|- ( b e. |^| A -> ( y e. A -> b e. y ) ) |
37 |
35 32 36
|
sylc |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. y ) |
38 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
39 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
40 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
41 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
42 |
38 39 40 41 1
|
lsscl |
|- ( ( y e. S /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. y /\ b e. y ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
43 |
29 30 34 37 42
|
syl13anc |
|- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
44 |
43
|
ralrimiva |
|- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
45 |
|
ovex |
|- ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V |
46 |
45
|
elint2 |
|- ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A <-> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
47 |
44 46
|
sylibr |
|- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A ) |
48 |
2 3 4 5 6 7 17 28 47
|
islssd |
|- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A e. S ) |