Metamath Proof Explorer


Theorem hlclat

Description: A Hilbert lattice is complete. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )

Proof

Step Hyp Ref Expression
1 hlomcmcv ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )
2 1 simp2d ( 𝐾 ∈ HL → 𝐾 ∈ CLat )