Metamath Proof Explorer


Theorem rexlimdv3a

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv . (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypothesis rexlimdv3a.1
|- ( ( ph /\ x e. A /\ ps ) -> ch )
Assertion rexlimdv3a
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdv3a.1
 |-  ( ( ph /\ x e. A /\ ps ) -> ch )
2 1 3exp
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 rexlimdv
 |-  ( ph -> ( E. x e. A ps -> ch ) )