Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimat.h |
|- H = ( LHyp ` K ) |
2 |
|
dih1dimat.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dih1dimat.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dih1dimat.a |
|- A = ( LSAtoms ` U ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
8 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
9 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
10 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
11 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
12 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
13 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
14 |
|
eqid |
|- ( invr ` ( Scalar ` U ) ) = ( invr ` ( Scalar ` U ) ) |
15 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
16 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
18 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
19 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
20 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = ( ( ( ( invr ` ( Scalar ` U ) ) ` s ) ` f ) ` ( ( oc ` K ) ` W ) ) ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = ( ( ( ( invr ` ( Scalar ` U ) ) ` s ) ` f ) ` ( ( oc ` K ) ` W ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
dih1dimatlem |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> P e. ran I ) |